Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Enzymatic synthesis of beta-lactam antibiotics via direct condensation

Ulijn, R.V. and De Martin, L. and Halling, P.J. and Moore, B.D. and Janssen, A.E.M. (2002) Enzymatic synthesis of beta-lactam antibiotics via direct condensation. Journal of Biotechnology, 99 (3). pp. 215-222. ISSN 0168-1656

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper, the feasibility of precipitation driven synthesis of acidic and zwitterionic beta-lactam antibiotics is studied. As an example of the first type, penicillin G was produced in good yield (160 mmol kg(-1)) directly from the free acid and an-tine aqueous substrate suspension, where the synthesis product precipitated. Such a precipitation driven synthesis via direct reversal of the hydrolytic reaction is thermodynamically unfavourable for zwitterionic beta-lactam antibiotics, such as amoxicillin. In this paper, a novel method is suggested to help favour precipitation of (poorly soluble) product salts by deliberate addition of certain counter-ions. After screening a number of different counter-ions, it was found that the amoxicillin anion forms a poorly soluble salt with Zn2+. Despite increased beta-lactam degradation due to the presence of zinc ions, in a synthetic reaction with 0.1 M ZnSO4 present the synthetic yield could be increased at least 30-fold.