Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Modeling of Knudsen layer effects in micro/nanoscale gas flows

Dongari, Nishanth and Zhang, Yonghao and Reese, Jason (2011) Modeling of Knudsen layer effects in micro/nanoscale gas flows. Journal of Fluids Engineering, 133 (7). ISSN 0098-2202

[img] PDF
Zhang_YH_Reese_JM_Pure_Modeling_of_Knudsen_layer_effects_in_micro_nano_scale_gas_flows_May_2011.pdf - Preprint

Download (1MB)

Abstract

We propose a power-law based effective mean free path (MFP) model so that the Navier-Stokes-Fourier equations can be employed for the transition-regime flows typical of gas micro/nanodevices. The effective MFP model is derived for a system with planar wall confinement by taking into account the boundary limiting effects on the molecular free paths. Our model is validated against molecular dynamics simulation data and compared with other theoretical models. As gas transport properties can be related to the mean free path through kinetic theory, the Navier-Stokes-Fourier constitutive relations are then modified in order to better capture the flow behavior in the Knudsen layers close to surfaces. Our model is applied to fully developed isothermal pressure-driven (Poiseuille) and thermal creep gas flows in microchannels. The results show that our approach greatly improves the near-wall accuracy of the Navier-Stokes-Fourier equations, well beyond the slip-flow regime.