Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Solvent selection for solid-to-solid synthesis

Ulijn, R.V. and De Martin, L. and Gardossi, L. and Janssen, A.E.M. and Moore, B.D. and Halling, P.J. (2002) Solvent selection for solid-to-solid synthesis. Biotechnology and Bioengineering, 80 (5). pp. 509-515. ISSN 0006-3592

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Thermolysin catalyzed solid-to-solid synthesis of the model peptide Z-L-Phe-L-Leu-NH2 is practically feasible in water and a range of organic solvents with different physicochemical properties. Excellent overall conversions were obtained in acetonitrile, ethyl acetate, n-hexane, methanol, 2-propanol, tert-amyl alcohol, tetrahydrofuran, toluene and water, while no product precipitation was observed in dichloromethane resulting in a much lower yield. In precipitation driven synthesis the product accumulates both in solution and in the solid phase. It was shown that the highest overall yields (yield in the liquid plus yield in the solid) can be expected in solvents where the substrate solubilities are minimized. The best yields of solid product can be expected in solvents where both product and substrate solubilities are lowest. This was in agreement with experimental observations and should be generally valid.