Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Polarization dynamics in vertical-cavity surface emitting lasers

Ackemann, Thorsten and Sondermann, M. (2005) Polarization dynamics in vertical-cavity surface emitting lasers. In: Trends in spatiotemporal dynamics in lasers. Research Signpost, Keralia, pp. 82-110. ISBN 81-7736-235-6

[img]
Preview
PDF
Ackemann.pdf - Accepted Author Manuscript

Download (363kB) | Preview

Abstract

Experiments and their interpretation on polarization dynamics and polarization switching in vertical-cavity surface-emitting lasers operated in the fundamental transverse mode regime are reviewed. Important observations are switching events to a mode with the lower unsaturated gain and the existence of elliptically polarized dynamical transition states after the destabilization of the low-frequency polarization mode. The observations demonstrate the need to consider explicitly the phase properties of the optical field as well as nonlinear effects affecting polarization selection above threshold. Good qualitative agreement is found with a model which takes into account the spin degrees of freedom of the light field as well as of the carriers (`spin-flip model'), if the spin-flip rate is taken to be some tens of $10^9$~s$^{-1}$. This constitutes a strong -- though indirect -- indication that spin dependent processes are important in polarization selection in the devices investigated.