Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Molecular dynamics simulations of liquid flow in and around carbon nanotubes

Nicholls, William and Borg, Matthew Karl and Reese, Jason (2010) Molecular dynamics simulations of liquid flow in and around carbon nanotubes. In: ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels: Parts A and B. ASME, USA, pp. 979-985. ISBN 978-0-7918-5450-1

[img] PDF
Reese_JM_Pure_Molecular_dynamics_simulations_of_liquid_flow_in_and_around_carbon_nanotubes_Jun_2011.pdf - Preprint

Download (696kB)

Abstract

Using recently-developed fluid state controllers [1], we apply continuum fluid boundary conditions to molecular dynamics (MD) simulations of liquid argon flow past a carbon nanotube (CNT) and through a CNT membrane. Advantages of this method are that it: is not dependent on periodic boundary conditions; can accurately generate fluid transport without any geometrical constraints; and is capable of performing as an essential part of a hybrid continuum/atomistic technique. In our simulations, a pressure gradient is applied across a CNT membrane by controlling the densities of two reservoirs located either side of the membrane. Fluid velocity and density distributions are reported and compared to other published data where possible.