Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Dissipative mass flux and sound wave propagations in monatomic gases

Dadzie, Kokou and Reese, Jason (2011) Dissipative mass flux and sound wave propagations in monatomic gases. In: Rarefied gas dynamics. AIP Conference Proceedings, 1333 (1st). Springer, pp. 655-660. ISBN 9780735408890

[img] PDF
Reese_JM_Pure_Dissipative_mass_flux_and_sound_wave_propagation_in_monatomic_gases_Jun_2011.pdf - Preprint

Download (71kB)


Predicting sound wave dispersion in monatomic gases is a fundamental gas flow problem in rarefied gas dynamics. The Navier-Stokes-Fourier model is known to fail where local thermodynamic equilibrium breaks down. Generally, conventional gas flow models involve equations for mass-density without a dissipative mass contribution. In this paper we observe that using a dissipative mass flux contribution as a non-local-equilibrium correction can improve agreement between the continuum equation prediction of sound wave dispersion and experimental data. Two mass dissipation models are investigated: a preliminary model that simply incorporates a diffusive density term in the set of three conservation equations, and another model derived from considering microscopic fluctuations in molecular spatial distributions.