Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Dissipative mass flux and sound wave propagations in monatomic gases

Dadzie, Kokou and Reese, Jason (2011) Dissipative mass flux and sound wave propagations in monatomic gases. In: Rarefied gas dynamics. AIP Conference Proceedings, 1333 (1st). Springer, pp. 655-660. ISBN 9780735408890

[img] PDF
Reese_JM_Pure_Dissipative_mass_flux_and_sound_wave_propagation_in_monatomic_gases_Jun_2011.pdf - Preprint

Download (71kB)

Abstract

Predicting sound wave dispersion in monatomic gases is a fundamental gas flow problem in rarefied gas dynamics. The Navier-Stokes-Fourier model is known to fail where local thermodynamic equilibrium breaks down. Generally, conventional gas flow models involve equations for mass-density without a dissipative mass contribution. In this paper we observe that using a dissipative mass flux contribution as a non-local-equilibrium correction can improve agreement between the continuum equation prediction of sound wave dispersion and experimental data. Two mass dissipation models are investigated: a preliminary model that simply incorporates a diffusive density term in the set of three conservation equations, and another model derived from considering microscopic fluctuations in molecular spatial distributions.