Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Dynamic control of localized structures in a nonlinear feedback experiment

Ayoub, Moussa and Gutlich, B. and Denz, Cornelia and Papoff, Francesco and Oppo, Gian-Luca and Firth, William (2010) Dynamic control of localized structures in a nonlinear feedback experiment. In: Localized States in Physics: Solitons and Patterns. Springer, pp. 213-236. ISBN ISBN-10: 9783642165481

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Spatial dissipative solitons exhibit a robust form as well as complex dynamic behaviour that make them attractive for applications in the context of all– optical information processing. In this chapter we give an overview of recent experimental and theoretical results on the features of spatial dissipative solitons in a single feedback experiment using a liquid crystal light valve (LCLV) as a model nonlinear medium. In particular, we present techniques for the control of the symmetry and spatial position of localized states in LCLV based experiments. We first discuss the interaction of dissipative solitons with spatially imposed boundary constraints in the feedback loop. This interaction leads to symmetry-breaking phenomena of feedback dissipative solitons. We also present static and dynamic techniques to experimentally control and guide dissipative solitons on modified background by using externally adapted intensity distributions.