Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Temperature dependence of the interfacial shear strength in glass–fibre polypropylene composites

Thomason, James and Yang, Liu (2011) Temperature dependence of the interfacial shear strength in glass–fibre polypropylene composites. Composites Science and Technology, 71 (13). pp. 1600-1605. ISSN 0266-3538

[img] Microsoft Word
Thomason_JL_Pure_Temperature_dependence_of_the_interfacial_shear_strength_in_glass_fibre_polypropylenen_composites_Jul_2011Temperature_CST_Revised_paper_July2011.doc - Preprint

Download (3MB)

Abstract

The present work focuses on further investigation of the hypothesis that a significant fraction of the level of apparent IFSS in glass fibre-reinforced thermoplastic composites can be attributed to a combination of thermal residual stress and static friction at the fibre-polymer interface. In order to obtain information on the temperature dependence of glass fibre – polypropylene IFSS a thermo-mechanical analyser has been adapted to enable interfacial microbond testing to be carried out in a well controlled temperature environment. Test results obtained by TMA-microbond testing showed excellent comparability with those obtained by normal microbond testing. The temperature dependence of IFSS of glass fibre – polypropylene was measured in the range from -40°C up to 100°C. The IFSS showed a highly significant inverse dependence on testing temperature with a major increase in the glass transition region of the PP matrix. It is shown that approximately 70% of the apparent room temperature IFSS in this system can be attributed to residual radial compressive stress at the fibre-matrix interface.