Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Temperature dependence of the interfacial shear strength in glass–fibre polypropylene composites

Thomason, James and Yang, Liu (2011) Temperature dependence of the interfacial shear strength in glass–fibre polypropylene composites. Composites Science and Technology, 71 (13). pp. 1600-1605. ISSN 0266-3538

[img] Microsoft Word
Thomason_JL_Pure_Temperature_dependence_of_the_interfacial_shear_strength_in_glass_fibre_polypropylenen_composites_Jul_2011Temperature_CST_Revised_paper_July2011.doc - Preprint

Download (3MB)

Abstract

The present work focuses on further investigation of the hypothesis that a significant fraction of the level of apparent IFSS in glass fibre-reinforced thermoplastic composites can be attributed to a combination of thermal residual stress and static friction at the fibre-polymer interface. In order to obtain information on the temperature dependence of glass fibre – polypropylene IFSS a thermo-mechanical analyser has been adapted to enable interfacial microbond testing to be carried out in a well controlled temperature environment. Test results obtained by TMA-microbond testing showed excellent comparability with those obtained by normal microbond testing. The temperature dependence of IFSS of glass fibre – polypropylene was measured in the range from -40°C up to 100°C. The IFSS showed a highly significant inverse dependence on testing temperature with a major increase in the glass transition region of the PP matrix. It is shown that approximately 70% of the apparent room temperature IFSS in this system can be attributed to residual radial compressive stress at the fibre-matrix interface.