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ABSTRACT

The work in this paper aims to introduce a new technique for artificial potential field methods based
on a superquadric representation of the obstacle shapes, and a quaternion representation of the
object orientation. The superquadric functions facilitate the representation of the actual shape of the
obstacles to provide additional free space for the motion of the maneuvering objects, consequently
reducing maneuvering effort for these objects. The quaternion representation overcomes the
singularities produced when using Euler angles and is more convenient for real time implementation.
Potential field methods provide a robust means of generating distributed controls for mobile robots
(terrestrial or space) to enable automated assembly tasks. The problem of local minimum formation
when dealing with objects having straight edges is also addressed in this paper through changing
the superquadric function shape simultaneously in accordance with the relative position and
orientation of the objects. The proposed potential function enables maneuvering objects to decide
which motion, both in translation and rotation, leads to the quickest descent of the artificial potential
most effectively. These coupled translation/rotation manoeuvres show significant benefits over de-
coupled translation maneuvers.

INTRODUCTION

Autonomous assembly is a key behavior
which is applied on almost all scales and is
present in a range of biological and physical
processes. The objective of the autonomous
assembly process is to allow a group of
elements to behave in a coordinated way by
following an algorithm. The techniques of
autonomous assembly could be used in large
space structure assembly where it is
dangerous and costly to use human effort.

The potential field technique used herein
aims to provide a motion planning algorithm
to reach a goal configuration without collision
between the moving elements of the
structure'. The notion of this method is a
physical idea for which any system tends to a

stable state, such as cooling a liquid to a
periodic crystal structure.

The work presented in this paper uses the
potential field method in structure assembly
through a superquadric representation of
each element to simulate its actual shape
and offer the maximum free work space for
the motion of a large number of elements.
The deficiency of the superquadric obstacle
representation in determining the separation
distance for specific configurations and
interpolating for others was overcome
through using quaternions for orientation
representation.



QUATERNIONS AND SUPERQUADRICS

Consider, for simplicity, two parallelepiped
elements in motion from some initial
configuration toward a goal. Each is
considered as an obstacle to the other.
Knowing the Cartesian coordinate as well as
the quaternion parameters for both of them, it
is possible to calculate the relative position of
one with respect to the other using
quaternion algebra through the
homogeneous transformation matrix T, by
considering that the origin of the rotating
frame is fixed at the centre of the obstacle?.
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where the quaternion parameters in this

transformation are the current quaternion

parameters of the obstacle. Hence, the

relative coordinates x, y, and z can be

expressed and used in the implicit equation

of the superquadric surface®*
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where a, b, and c define the size of the
obstacle in the x, y, and z direction
respectively, €, defines the obstacle shape in
the z-direction and ¢, defines its shapes in
the x-y plane.
Through changing the five parameters, a, b,
C, €4 and g,, the superquadric representation
of the obstacle can be changed from the
actual obstacle shape near the obstacle
edges to a sphere far from its edges. This is
the parametric property of superquadrics.
Before defining the obstacle potential energy,
it is necessary to define the distance between
any point and the superquadric surface.
The "inside-outside" function which defines if
the point lies inside, on the surface or outside
the superquadric shape is given by®:
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where a represents the five size and shape
parameters. If the value of F(a,x,y,z) =1, the
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point (x,y,z) lies on the surface of the
superquadric. If F(a,x,y,z) >1, the point lies
outside and if F(a,x,y,z)<1 the point lies
inside the superquadric

The main need to calculate the obstacle
potential energy is to define the distance
between any point in space and the
superquadric surface taking into
consideration that the origin of the Cartesian
coordinate system will be the centre of the
obstacle itself.

The minimum distance calculation through
the  Euclidian  distance  method is
computationally too expensive®. The most
efficient approximation for the distance
between a point and the superquadric shape
is based on the implicit form of the
superquadric and is given as’*®:

d(a,x,y, z) = |r|[1 - F(a, X, Y, z)_zglJ (4)

where a represent the superquadric size
parameters and x, y and z are the point
coordinates with respect to the frame of
reference centered on the centre of the
superquadric shape. The parameters ¢, and
€, should be chosen to vary from their values
that represent the obstacle shape to that for
the spherical shape. The way in which these
parameters change depends only on the
obstacle shape. Points at an equal distance
from the obstacle will show equal obstacle
potential. Figure 1 shows how iso-potential
contours change their shapes from the
obstacle shape to a spherical one as the
distance increases from the obstacle edges.

Fig. 1: Obstacle iso-potential contours



ATTRACTIVE POTENTIAL FUNCTION

Consider a maneuvering rigid body which
performs pure rotation in the body frame of
reference, is aligned with the principal axes of
inertia of the rigid body and rotates with
angular velocity @ with respect to an inertial
frame of reference. The product moments of
inertia are equal to zero and the mass
moment of inertia of the rigid body is
constant. The inertia matrix is then:

I; 00
I=/017, O (5)
0 0 I
The angular momentum is then defined as:
H=1Io (6)

where ® = fa)l Wy —|T.
From Euler's equation the external torque
acting on the rigid body is:

T-H
=Hp+oxH
T=Ilo+oxlo (7)

The control torque T and translation velocity
v to maneuver such a rigid body for assembly
will now be considered using an artificial
potential function. The potential function
based on Lyapunov's second method will be
defined as:

\% :%|r—rG|2 +Cl<ﬁTﬁ)+%mT1m 8)
where C; is the control torque gain and q is

the vector of the error quaternions

|_q1 9> 93 —|T . The fourth quaternion

parameter, g, = \/l—qlz —q% —q32 , Will reach

its goal value, q4 = 1, as the first three terms
reach zero.

It is clear that the proposed function satisfies
the condition of a Lyapunov function such
that V= 0 at the goal position where w and q

are both zero and V > 0 for every state vector
except at the goal position.
The time derivative of the function V is:

V =|r—rglf +2C (aTq)+ o'lo (9)

The first derivative of the quaternion is
defined as®:

ﬁz%Qw (10)

where Q is the matrix of quaternion
components and is defined as:
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Substituting in (9)
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and so we have QTE =q4q and then:

V= |r -Trg |1" + mT(Clq4ﬁ+ Io)
From (7)
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Let T, the Ilinear control torque be
T = _C1q4q— Cz(‘) SO that:

V=|r—rG|i'+(nT(—C2(o—(oon)) (14)

But o' (0xIe)=0 so that

V:|r—rG|1"—C2(oT(n (15)
Then let
v=—kvVvV[" (16)

where v is the velocity of the maneuvering
object, and k expressed in equation (16) is

chosen as k=v_,, (l—e_ﬂv), where Vmay is

the maximum controlled velocity, and 8 is a
constant'®"".

Hence the last condition, V <0, is satisfied
for all state vectors except at the goal
position, so the proposed function can be
considered as a Lyapunov function providing
the following relation is valid:

o =-1"(Ciq,q+Cr0+ox1o) (17)



REPULSIVE POTENTIAL FUNCTION

Local minima can appear in some obstacle
representations due to the interaction
between the iso-potential contours of both the
goal and obstacle, where one is spherical
while the other has straight edges. The
superquadric potential proposed by
Volpe'*'3, overcomes this problem of local
minimum with a single obstacle. The
deformable superquadric function used by
Volpe changes its shape from the actual
obstacle shape near its edges to a spherical
shape far from the obstacle. The
superquadric  implicit  function for a
parallelepiped can be written as:

2m 2m 2m
s
a b c

where, m varies from infinity at the obstacle
edges to unity sufficiently far from them.

The formulation of the obstacle repulsive
potential energy function depends on the
required controlled object behavior whilst
approaching the obstacle. Two types of
repulsive potential function are used herein:
the avoidance potential and the approach
potential.

The idea of the avoidance potential is to
prevent collision between the controlled
object and the surrounding obstacles by
introducing infinite repulsive energy around
the obstacle to force the controlled object to
move away from the obstacle regardless of
the kinetic energy of each of them.

Through measurement of the minimum
distance between the two objects, it is
possible to use the Born approximation for a
Yukawa potential™ in which the exponential
term reaches zero faster than the 1/d term.

=4.
Vobsi,j j dl-,j ,
The distance between object j and obstacle
dij, is obtained from the superquadric
separation distance using equation (4). The
parameter a controls the sharpness of the
obstacle potential shape and the transition of
the isopotential contour shape changing from
the actual obstacle shape to the spherical
one. Increasing the value of a increases the
sharpness of the potential decay, this limits
the distance of influence of the obstacle on
the overall potential. The choice of the value
of a is largely dependant on the number of
objects, besides changing its value can help

dijz1 (19)

in overcoming the formation of local minima,
produced when dealing with many objects.
The parameter a will therefore be expressed
as a function of the minimum distance
between the objects as well as the object
priority when moving.
The definition of the parameter A is crucial in
structure assembly problems. It will be
expressed as a function of the configuration
of the objects, allowing the obstacle potential
to decay to zero at the goal configuration to
allow for smooth contact which is required for
connection of the structure elements®.
The approach potential objective is to
decrease the kinetic energy of the moving
object when approaching obstacles with a
certain limit to reduce the contact velocity.
The approach potential function can be
expressed as:

—ad, T

Vs = A€ 0« d<1 (20)

obsi,j

OVERALL POTENTIAL FUNCTION

The total potential is a linear superposition of
the attractive and repulsive potentials. The
total potential of maneuvering object j, in the
presence of n obstacles is given as:

Fordz=1
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The element velocity vector is now required
to be in the negative gradient in the direction
of the potential field. Substituting in equation

(16) for the desired velocity we obtain:

m OV
obs; ;
ot Ve e 3
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(23)
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y, [m]

where Vnax is the maximum controlled
velocity, which is a function of the
characteristics of maneuvering object. 21
The radial Euclidian distance, d, as
expressed before depends on the relative

distances between the obstacle and the i ﬁ
controlled object in an obstacle body frame of
reference. This distance is calculated, again, 05}
from the homogeneous transformation using _ 2)
quaternions as: E ! %
-05F
X Xobj ~ Xobs |
YVI=T Yobj — Yobs (24)
z Zobj ~ Zobs T
Substituting the values of x, y, and z in the T By P —
superquadric inside-outside function and the x, [m]
radial Euclidian distance equation we can Fig. 2.b: t=2.4 sec
obtain the term Vd, which provides the link
between the translational and rotational 2r
motion.
151
NUMERICAL RESULTS | “)
The numerical results presented herein are 05}
the assembly of a cube using four _
parallelepipeds, which may be considered as E o
a repeated unit in large space frame structure
assembly. The elements are assumed to be o9
made from steel with 1m length, and al
0.2x0.2m cross section. The control gain was
chosen as unity. 5}
The starting position is shown in fig(2-a), and
subsequent motion is demonstrated in 2y a5 1 as 0 05 1 15
fig(2-b, 2-c). The final configuration is shown X, [m]
in fig(2-d). Fig. 2.c: t=25 sec
2 2
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05 " 05r (3) 14)
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23 75 X 05 0 05 1 15 2 2 a5 a 05 0 05 1 15
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Fig. 2.d: The assembled structure, t = 200 sec
Fig. 2.a: The start position, t = 0 sec Fig. 2: Assembling of a 2-D cube
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The mutual effect between position and The bounded time approach gives good
orientation of the elements is shown in fig(3). results in structure assembly in which the
velocity of the maneuvering objects vanishes
(and so contact is made) in a finite time.

0sf An attitude change commanded by the
required control torque demonstrates that the
maneuvering object is capable of choosing
between both orientation and translation to
decrease the overall potential.

The proposed potential function enables
online controllers to choose the path and
attitude of maximum negative gradient of the
artificial potential. Such on-line controllers
could have direct application to the
automated assembly of future large space
-8} structures.
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