Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Design and synthesis of novel EG5 inhibitors

Abualhasan, M. and Sutcliffe, O. B. and Kozielski, F. and Mackay, S. P. (2010) Design and synthesis of novel EG5 inhibitors. Journal of Pharmacy and Pharmacology, 62 (10). p. 1367. ISSN 0022-3573

[img] PDF
Programme_1_.pdf
Available under License Unspecified.

Download (791kB)

Abstract

The currently available antimitotic drugs directly target the microtubule building blocks. These drugs induce adverse side-effects including neurotoxicity, and cancer cells can potentially develop resistance to them. New antimitotic drugs act indirectly on microtubules, these drugs have specifi c functions on phases of mitosis, and their inhibition may produce fewer side-effects than tubulin drugs. Eg5 motors are a member of the kinesin family which are required for spindle bipolarity maintenance. Inhibition of these motors induces mono-asters cells. S-trityl-L-cysteine (STLC) is a specifi c and effective Eg5 inhibitor, the trityl group of the STLC binds to three hydrophobic sites inside the binding pocket [1]. Our aim is to design and synthesise high potency specific Eg5 inhibitors which have a higher inhibition activity than the STLC. Our suggested compounds have in general extended benzyl group, which is believed to be more fl exible compared to the phenyl group of the STLC. It is also believed that the benzyl moiety will increase the hydrophobic binding to the Eg5 motors.