Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A plausible hydrological scenario for the Bolling-Allerod atmospheric methane increase

Kalin, R.M. and Jirikowic, J.L. (1996) A plausible hydrological scenario for the Bolling-Allerod atmospheric methane increase. Holocene, 6 (1). pp. 111-118.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The glacial record has shown that atmospheric methane concentrations have fluctuated in the past, particularly during the Bolling-Allerod interstadial. We used an inverse photochemical carbon-cycle model to interpret the magnitude of effect that glacial-interglacial atmospheric methane variations have on the global carbon cycle. The results of this modelling suggest that an observed variation in atmospheric C-14 during this time period may be the result of oxidation of the increased atmospheric methane. We re-examine methane clathrate in palaeosols as a potential source of the methane, and the influence of deglaciation and subsequent heat transport from advecting groundwater in these sediments may be a plausible mechanism by which atmospheric CH4 concentrations abruptly increased during the Bolling-Allerod.