Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Microemulsions for oral delivery of insulin : design, development and evaluation in streptozotocin induced diabetic rats

Sharma, G. and Wilson, K. and van der Walle, C. F. and Sattar, N. and Petrie, J. R. and Kumar, M. N. V. Ravi (2010) Microemulsions for oral delivery of insulin : design, development and evaluation in streptozotocin induced diabetic rats. European Journal of Pharmaceutics and Biopharmaceutics, 76 (2). pp. 159-169. ISSN 0939-6411

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Insulin loaded microemulsions were developed adopting a low shear reverse micellar approach using didoceyldimethylammonium bromide (DMAB) as the surfactant, propylene glycol (PG) as the co-surfactant, triacetin (TA) as the oil phase and insulin solution as the aqueous phase. A ternary phase diagram was constructed based on multiple cloud point titration to highlight the reverse micellar region. The droplet sizes of the microemulsions were 161.7 +/- 24.7 nm with PDI of 0.447 +/- 0.076 and insulin entrapment of similar to 85%. Transmission electron microscopy (TEM) revealed the spherical nature and size homogeneity of the microemulsion droplets. The conformational stability of the entrapped insulin within microemulsions was confirmed by fluorescence spectroscopy and circular dichroism. The microemulsions displayed a 10-fold enhancement in bioavailability compared with plain insulin solution administered per oral in healthy rats. The short-term in vivo efficacy in STZ induced diabetic rats provided the proof of concept by a modest glucose reduction at a dose of 20 IU/kg. Together this preliminary data indicate the promise of microemulsions for oral delivery of insulin. (C) 2010 Elsevier B.V. All rights reserved.