Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Microbial transhalogenation: A complicating factor in determination of atmospheric chloro- and bromomethane budgets

Harper, D.B. and Kalin, R.M. and Larkin, M.J. and Hamilton, J.T.G. and Coulter, C. (2000) Microbial transhalogenation: A complicating factor in determination of atmospheric chloro- and bromomethane budgets. Environmental Science and Technology, 34 (12). pp. 2525-2527.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The sources and sinks of the ozone-depleting halocarbons, chloromethane (CH3Cl) and bromomethane (CH3Br), have been the subject of recent controversy. Considerable uncertainty surrounds the relative contributions of oceanic and terrestrial sources of CH3Cl and natural versus anthropogenic fluxes of CH3Br. Halogen stable isotope ratios in atmospheric halomethanes could provide a valuable tool in estimating relative magnitudes of sources, particularly those of CH3Cl. However, the reliability of such techniques is critically dependent on the conservative nature of the halogens within these atmospheric halomethanes. Here we demonstrate that intact cells of the soil bacterium strain CC495 under anaerobic or microaerophilic conditions rapidly exchange Cl-37(-) with organically bound chlorine in CH3Cl. Since Cl- occurs ubiquitously and such bacteria appear to be widespread, any chlorine isotope fractionation during biological or abiotic CH3Cl production may therefore not be apparent in atmospheric CH3Cl. Cells of strain CC495 also catalyzed transhalogenation of CH3Br to CH3Cl, suggesting that this transformation may represent a significant sink for atmospheric CH3Br in soil.