Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Investigation of molybdenum-(resorcinol–formaldehyde) (Mo-RF) electrode for alkaline electrolyser operation

Hall, Peter (2011) Investigation of molybdenum-(resorcinol–formaldehyde) (Mo-RF) electrode for alkaline electrolyser operation. International Journal of Hydrogen Energy, 36 (13). pp. 7791-7798. ISSN 0360-3199

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The use of zero-gap cell geometry and development of low cost electrodes are some of several attempts on reducing cost and increasing efficiency of electrolytic hydrogen production. This study involves the synthesis of an electrode consisting of resorcinol–formaldehyde (RF) carbon aerogels of high surface area (>700 m2/g) and nano-pore sizes (4 nm) thermally deposited on molybdenum metal. The hydrogen evolution reaction (HER) characteristics of the Mo-RF electrode involving an intermediate ‘spectator metal-oxo’ compound and its Volmer–Heyrovsky electro-catalyst property are described. The physical and morphological structure of the Mo-RF has been shown through SEM images thus confirming the effectiveness of the synthesis method. Polarisation measurement of the Mo-RF electrode in 30% (by vol) KOH solution at 298 K indicates its potential applications in alkaline electrolysers. It is anticipated that the use of Mo-RF electrode offers economic benefit of reduced capital cost investment compared with other electrodes such as Pt–C previously used in electrolysers.