Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Isotopic composition of inorganic carbon as an indicator of benzoate degradation by Pseudomonas putida: temperature, growth rate and pH effects

Barth, J.A.C. and Kalin, R.M. and Larkin, M.J. and Hall, James A. and Fitzgerald, U. (2000) Isotopic composition of inorganic carbon as an indicator of benzoate degradation by Pseudomonas putida: temperature, growth rate and pH effects. Rapid Communications in Mass Spectrometry, 14 (15). pp. 1316-1320.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Degradation experiments of benzoate by Pseudomonas putida resulted in enzymatic carbon isotope fractionations, However, isotopic temperature effects between experiments at 20 and 30 degrees C were minor. Averages of the last three values of the CO2 isotopic composition (delta(13)C(CO2(g))) were more negative than the initial benzoate delta(13)C value (-26.2 parts per thousand Vienna Pee Dee Belenite (VPDB)) by 3.8, 3.4 and 3.2 parts per thousand at 20, 25 and 30 degrees C, respectively. Although the maximum isotopic temperature difference found was only 0.6 parts per thousand, more extreme temperature variations may cause larger isotope effects. In order to understand the isotope effects on the total inorganic carbon (TIC), a better measure is to calculate the proportions of the inorganic carbon species (CO2(g), CO2(aq) and HCO3-) and to determine their cumulative delta(13)C(TIC). In all three experiments delta(13)C(TIC) was more positive than the initial isotopic composition of the benzoate at a pH of 7, This suggests an uptake of C-12 in the biomass in order to match the carbon balance of these closed system experiments. Copyright (C) 2000 John Wiley & Sons, Ltd.