Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Carbon isotope fractionation during abiotic reductive dehalogenation of trichloroethene (TCE)

Bill, M. and Schuth, C. and Barth, J.A.C. and Kalin, R.M. (2001) Carbon isotope fractionation during abiotic reductive dehalogenation of trichloroethene (TCE). Chemosphere, 44 (5). pp. 1281-1286.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Dehalogenation of trichloroethene (TCE) in the aqueous phase, either on palladium catalysts with hydrogen as the reductant or on metallic iron, was associated with strong changes in delta C-13. In general, the delta C-13 of product phases were more negative than those of the parent compound and were enriched with time and fraction of TCE remaining. For dehalogenation with iron, the delta (13) C of TCE and products varied from -42 parts per thousand. to + 5 parts per thousand. For the palladium experiments, the final product, ethane, reached the initial delta C-13 of TCE at completion of the dehalogenation reaction. During dehalogenation, the carbon isotope fractionation between TCE and product phases was not constant. The variation in delta C-13 of TCE and products offers a new monitoring tool that operates independently of the initial concentration of pollutants for abiotic degradation processes of TCE in the subsurface, and may be useful for evaluation of remediation efficiency. (C) 2001 Elsevier Science Ltd. All rights reserved.