Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A coupling simulation interface for performance-based wind engineering of tall buildings

Clannachan, G. H. and Bicanic, N. and Copeland, G. M. (2011) A coupling simulation interface for performance-based wind engineering of tall buildings. In: Proceedings of 19th UK Conference of the Association for Computational Mechanics in Engineering. Heriot-Watt University, Edinburgh, pp. 201-204. ISBN 978-0956595119

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A Performance-Based Wind Engineering (PBWE) framework for assessing the serviceability limit state of tall buildings is considered. The immediate focus is on a key component of this procedure which involves creating an appropriate coupling interface between two independent fluid and structural solvers. The fluid solver (ANSYS FLUENT) uses the finite volume method to model the wind field and predict the wind-induced loads. The structural solver (Strand7) applies the finite element method to model the resulting dynamic response. The requirement of the coupling algorithm is to appropriately consider the interaction phenomena involving the wind and the tall building. Clearly, no single coupling algorithm exists which may be appropriate for all fluid-structure interaction problems; the choice depends on an appropriate level of detail and accuracy in a given simulation setting and has a significant impact on the computational demand and accuracy. The decision on the level of complexity for this particular coupling problem is related to the inherently probabilistic context of the PBWE framework and its ability to account for a whole range of uncertainties. The code for the coupling interface has been developed using Microsoft VBA and its functionality will be demonstrated using a case study of a standard 49-storey tall building. Attention will be focused on its capabilities and the potential consequences of its limitations.