Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Bioremediation of tributyltin contaminated sediment : degradation enhancement and improvement of bioavailability to promote treatment processes

Sakultantimetha, A. and Keenan, H. E. and Beattie, T. K. and Bangkedphol, S. and Cavoura, O. (2011) Bioremediation of tributyltin contaminated sediment : degradation enhancement and improvement of bioavailability to promote treatment processes. Chemosphere, 83 (5). pp. 680-686. ISSN 0045-6535

Full text not available in this repository. Request a copy from the Strathclyde author


Bioremediation of tributyltin (TBT) contaminated sediment was studied and degradation enhancement and improvement of bioavailability were also investigated. In TBT spiked sediment, the half-life of TBT in the control sample, representing natural attenuation, was 578 d indicating its persistence. In the stimulated sample (pH 7.5, aeration and incubated at 28 C), the half-life was significantly reduced to 11 d. Further stimulation by nutrient addition (succinate, glycerol and L-arginine) or inoculation with Enterobacter cloacae (107 viable cells g1 of sediment) resulted in half-life reduction to 9 and 10 d, respectively. In non-spiked sediment, the indigenous microorganisms were able to degrade aged TBT, but the extended period of contamination decreased the degradation efficiency. To improve bioavailability, addition of surfactant, adjustment of salinity and sonication were studied. The highest percentage solubilisation of TBT in water was obtained by adjusting salinity to 20 psu, which increased the solubility of TBT from 13% to 33%. Half-lives after bioavailability was improved were 5, 4 and 4 d for stimulation, stimulation w/nutrient addition and stimulation w/inoculation, respectively. However, natural attenuation in the control sample was not enhanced. The results show that providing suitable conditions is important in enhancing TBT biodegradation, and bioavailability improvement additionally increased the rate and degraded amount of TBT. Unfortunately, nutrient addition and inoculation of the degrader did not enhance the degradation appreciably.