Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

In vivo real-time multiphoton imaging of T lymphocytes in the mouse brain after experimental stroke

Fumagalli, Stefano and Coles, Jonathan A and Ejlerskov, Patrick and Ortolano, Fabrizio and Bushell, Trevor J and Brewer, James M and De Simoni, Maria-Grazia and Dever, Gary and Garside, Paul and Maffia, Pasquale and Carswell, Hilary V (2011) In vivo real-time multiphoton imaging of T lymphocytes in the mouse brain after experimental stroke. Stroke, 42 (5). pp. 1429-1436. ISSN 0039-2499

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

BACKGROUND AND PURPOSE: To gain a better understanding of T cell behavior after stroke, we have developed real-time in vivo brain imaging of T cells by multiphoton microscopy after middle cerebral artery occlusion. METHODS: Adult male hCD2-GFP transgenic mice that exhibit green fluorescent protein-labeled T cells underwent permanent left distal middle cerebral artery occlusion by electrocoagulation (n=6) or sham surgery (n=6) and then multiphoton laser imaging 72 hours later. RESULTS: Extravasated T cell number significantly increased after middle cerebral artery occlusion versus sham. Two T cell populations existed after middle cerebral artery occlusion, possibly driven by 2 T cell subpopulations; 1 had significantly lower and the other significantly higher track velocity and displacement rate than sham. CONCLUSIONS: The different motilities and behaviors of T cells observed using our imaging approach after stroke could reveal important mechanisms of immune surveillance for future therapeutic exploitations.