Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Deletion of the dual specific phosphatase-4 (DUSP-4) gene reveals an essential non-redundant role for MAP kinase phosphatase-2 (MKP-2) in proliferation and cell survival

Lawan, Ahmed and Al-Harthi, Sameer and Cadalbert, Laurence and McCluskey, Anthony G. and Shweash, Muhannad and Grassia, Gianluca and Grant, Anne and Boyd, Marie and Currie, Susan and Plevin, Robin (2011) Deletion of the dual specific phosphatase-4 (DUSP-4) gene reveals an essential non-redundant role for MAP kinase phosphatase-2 (MKP-2) in proliferation and cell survival. Journal of Biological Chemistry, 286 (15). pp. 12933-12943. ISSN 0021-9258

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Mitogen-activated protein kinase phosphatase-2 (MKP-2) is a type 1 nuclear dual specific phosphatase (DUSP) implicated in a number of cancers. We examined the role of MKP-2 in the regulation of MAP kinase phosphorylation, cell proliferation, and survival responses in mouse embryonic fibroblasts (MEFs) derived from a novel MKP-2 (DUSP-4) deletion mouse. We show that serum and PDGF induced ERK-dependent MKP-2 expression in wild type METs but not in MKP-2(-/-) MEFs. PDGF stimulation of sustained ERK phosphorylation was enhanced in MKP-2(-/-) MEFs, whereas anisomycin-induced JNK was only marginally increased. However, marked effects upon cell growth parameters were observed. Cellular proliferation rates were significantly reduced in MKP-2(-/-) MEFs and associated with a significant increase in cell doubling time. Infection with adenoviral MKP-2 reversed the decrease in proliferation. Cell cycle analysis revealed a block in G(2)/M phase transition associated with cyclin B accumulation and enhanced cdc2 phosphorylation. MEFs from MKP-2(-/-) mice also showed enhanced apoptosis when stimulated with anisomycin correlated with increased caspase-3 cleavage and gamma H2AX phosphorylation. Increased apoptosis was reversed by adenoviral MKP-2 infection and correlated with selective inhibition of JNK signaling. Collectively, these data demonstrate for the first time a critical non-redundant role fir MKP-2 in regulating cell cycle progression and apoptosis.

Item type: Article
ID code: 31763
Keywords: N-terminal-kinase, protects endothelial-cells, double-strand breaks, signaling pathways, oxidative stress, express, apoptosis, activation, JNK, cancer, Pharmacy and materia medica, Biochemistry, Cell Biology, Molecular Biology
Subjects: Medicine > Pharmacy and materia medica
Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Technology and Innovation Centre > Advanced Science and Technology
Technology and Innovation Centre > Bionanotechnology
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 15 Jun 2011 15:46
    Last modified: 02 May 2014 05:05
    URI: http://strathprints.strath.ac.uk/id/eprint/31763

    Actions (login required)

    View Item