Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Differential cytotoxicity of phospholipid analogues to pathogenic Acanthamoeba species and mammalian cells

McBride, James and Mullen, Alexander B. and Carter, K. Christine and Roberts, Craig W. (2007) Differential cytotoxicity of phospholipid analogues to pathogenic Acanthamoeba species and mammalian cells. Journal of Antimicrobial Chemotherapy, 60 (3). pp. 521-525. ISSN 0305-7453

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Previous studies have reported the ability of several phospholipid analogues to successfully inhibit the growth of Acanthamoeba species in vitro. This study tests further phospholipid analogues, either as free drug or in liposomal formulations, and unlike previous studies, examines their comparative toxicities to mammalian cells. The relative cytotoxic activities of the phospholipid derivatives hexadecyl-PC, octadecyl-PC, elaidyl-PC, erucyl-PC and edelfosine, against Acanthamoeba castellanii, Acanthamoeba polyphaga and a rabbit corneal epithelial (RCE) cell line, was determined by the alamarBlue (TM) assay. Free and liposomal formulations were compared for hexadecyl-PC and elaidyl-PC. Both hexadecyl-PC and octadecyl-PC (IC50 values between 3.9 and 7.8 mu M) demonstrated considerable activity against A. castellanii, as did elaidyl-PC ( IC50 values between 15.6 and 31.25 mu M). Both hexadecyl-PC and elaidyl-PC also proved effective against A. polyphaga ( IC50 values between 15.6 and 31.25 and between 31.25 and 62.5 mu M, respectively). In contrast, neither erucyl-PC nor edelfosine was inhibitory against either Acanthamoeba species. The growth of RCE cells was inhibited by octadecyl-PC, erucyl-PC and edelfosine (octadecyl-PC and erucyl-PC IC50 values between 7.8 and 15.6 mu M and edelfosine IC50 values between 31.25 and 62.5 mu M). Liposomal formulations of hexadecyl-PC and elaidyl-PC were less effective than free drug against both Acanthamoeba species. These results demonstrate that hexadecyl-PC has the highest therapeutic index and is the most promising for the treatment of acanthamoebiasis.