Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Synthetic peptides derived from diatom Cylindrotheca fusiformis : kinetics of silica formation and morphology characterisation

Whitlock, P W and Patwardhan, Siddharth and Stone, M O and Clarson, Stephen J. (2008) Synthetic peptides derived from diatom Cylindrotheca fusiformis : kinetics of silica formation and morphology characterisation. In: Polymer Biocatalysis and Biomaterials II. ACS symposium series . Oxford University Press, 412–433. ISBN 9780841269705

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Biocatalysis refers to the use of enzymes, microbes or higher organisms to carry out chemical or polymer reactions. It is currently a hot research topic with many academic, industrial, and government laboratories doing basic and applied R&D. In polymer science this field is rapidly growing, and many new reactions and new biocatalysts are being discovered and applied. Likewise, biomaterials comprise an equally exciting field of research that finds many applications in dental, surgical, and medical areas. Both fields are highly interdisciplinary, requiring (at various times) knowledge and expertise in organic and polymer chemistry, material science, biochemistry, molecular biology, microbiology, and chemical engineering. This symposium volume provides state-of-the-art reviews of these exciting fields as well as original research papers. The editors and the authors are all experts and active practitioners of polymer biocatalysis and biomaterials. They include academic, industrial, and government scientists who have brought different expertise and perspectives to these fields. Together, they have provided a most useful book that contains up-to-date developments in fundamental research and industrial R&D efforts.