Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Block of potassium channels and facilitation of acetylcholine release at the neuromuscular junction by the venom of the scorpion, Pandinus imperator

Marshall, D L and Harvey, A L (1989) Block of potassium channels and facilitation of acetylcholine release at the neuromuscular junction by the venom of the scorpion, Pandinus imperator. Toxicon, 27 (4). pp. 493-498. ISSN 0041-0101

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Venom from the scorpion Pandinus imperator potently and selectively blocks voltage-gated K+ channels in bullfrog neurones (Pappone, P. A. and Cahalan, M. D. 1987, J. Neurosci. 7, 3300-3305). Its effects on neuromuscular transmission have now been assessed. Twitch tension studies on chick biventer cervicis preparations showed that the venom (1 microgram/ml and above) significantly augmented responses to nerve but not muscle stimulation; there was little change in postjunctional sensitivity to cholinoceptor agonists or K+-induced depolarization. Electrophysiological studies on mouse triangularis sterni preparations revealed that the venom had no effect on spontaneous transmitter release, but increased evoked transmitter release. Extracellular recordings of nerve terminal action potentials showed that the venom selectively reduced the component of the waveform associated with K+ currents. These results confirm that this venom can selectively block neuronal K+ currents, and they show that this can facilitate the release of acetylcholine at the neuromuscular junction.