Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy

Mirzaeian, Mojtaba and Hall, Peter J. (2010) Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy. Journal of Power Sources, 195 (19). pp. 6817-6824. ISSN 0378-7753

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Polymer based carbon aerogels were prepared by synthesis of a resorcinol formaldehyde gel followed by pyrolysis at 1073 K under Ar and activation of the resultant carbon under CO2 at different temperatures. The prepared carbon aerogels were used as active materials in the preparation of cathode electrodes for lithium oxygen cells and the electrochemical performance of the cells was evaluated by galvanostatic charge/discharge cycling and electrochemical impedance measurements. It was shown that the storage capacity and discharge voltage of a Li/O-2 cell strongly depend on the porous structure of the carbon used in cathode. EIS results also showed that the shape and value of the resistance in the impedance spectrum of a Li/O-2 cell are strongly affected by the porosity of carbon used in the cathode. Porosity changes due to the build up of discharge products hinder the oxygen and lithium ion transfer into the electrode, resulting in a gradual increase in the cell impedance with cycling. The discharge capacity and cycle life of the battery decrease significantly as its internal resistance increases with charge/discharge cycling.