

Glassey, R. and Stevenson, G. and Ferguson, R.I. (2006) Mobile object
location discovery in unpredictable environments. In: 3rd International
Conference on Mobile Computing and Ubiquitous Networking.

http://eprints.cdlr.strath.ac.uk/3166/

This is an author-produced version of a paper from the 3rd International
Conference on Mobile Computing and Ubiquitous Networking.

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any
profitmaking activities or any commercial gain. You may freely
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://eprints.cdlr.strath.ac.uk/2815/

Mobile Object Location Discovery in Unpredictable Environments

Richard J. Glassey†, Graeme Stevenson‡and Robert I. Ferguson†

†Global and Pervasive Computing Group, University of Strathclyde, U.K.
‡Systems Research Group, UCD Dublin, I.E.

{rjg, if}@cis.strath.ac.uk
{graeme.stevenson}@ucd.ie

ABSTRACT

Emerging mobile and ubiquitous computing environments
present hard challenges to software engineering. The use of
mobile code has been suggested as a natural fit for simplifing
software development for these environments. However, the
task of discovering mobile code location becomes a problem
in unpredictable environments when using existing strategies,
designed with fixed and relatively stable networks in mind.
This paper introduces AMOS, a mobile code platform aug-
mented with a structured overlay network. We demonstrate
how the location discovery strategy of AMOS has better re-
liability and scalability properties than existing approaches,
with minimal communication overhead. Finally, we demon-
strate how AMOS can provide autonomous distribution of ef-
fort fairly throughout a network using probabilistic methods
that requires no global knowledge of host capabilities.

Keywords: Mobile Code, Structured Overlay Network,
Location Discovery

1 Introduction

The proliferation of mobile and ubiquitous devices intro-
duces hard challenges to the domain of distributed computing.
These challenges include managing disconnected operation,
where a device may have intermittent network connectivity,
making optimal use of a device’s limited resources, and host
failure where a device may simply run out of battery power
or crash unexpectedly. Developing software for these unpre-
dictable environments is therefore made much harder than for
traditional distributed systems.

The use of mobile code [1] has been suggested as a natural
fit for managing some of the challenges of developing soft-
ware for mobile and ubiquitous computing environments [2].
Host failure, through loss of power, can be mitigated by mi-
grating a process to another device to continue its operation.
Disconnected operation can be enabled by migrating a pro-
cess from a device with weak connectivity into a network of
stable hosts to complete its task before returning to the orig-
inal device. Intensive processes can be migrated from a re-
source constrained device to another device that has better
resources available. These compelling reasons suggest that
mobile code has something to offer in the domain of mobile
and ubiquitous computing.

However, as soon as mobile code is set free to roam around
a network, tracking its location becomes important for sup-

porting communication with other processes. To prevent mo-
bile code from becoming unreachable, location discovery strate-
gies (centralised registry, multicast and home server) have
been developed. Unfortunately, each of these strategies has
serious flaws that render them neither reliable nor scalable for
the unpredictability displayed in mobile and ubiquitous envi-
ronments.

This paper describes AMOS (Adaptive Mobile Object Sys-
tem), a mobile code platform augmented with a structured
overlay network, which provides better location discovery of
mobile objects1, in terms of reliability and scalability, than ex-
isting strategies, with minimal communication overhead. We
introduce the Host Routing strategy, which makes use of an
overlay network to discover the location of mobile objects.
Overlay networks, such as CAN [3], Chord [4], Pastry [5] et
al, are distributed systems that do not rely on centralised con-
trol or hierarchical organisation [6]. They are typically self-
organising networks, layered upon an IP-based network, that
use a flat logical addressing scheme. Each host only needs
knowledge of O(log n) other hosts, yet can send a message to
an unknown host, through other hosts using key-based rout-
ing, which only takes O(log n) hops - in both cases n is the
number of hosts. This creates a global yet distributed index
of hosts which is scalable, efficient and reliable.

In AMOS, a distributed index of mobile objects is created.
Each mobile object has a globally unique identifier (GUID)
which is used to generate a unique network identifier (UNID)
in the overlay network address space. For every mobile object
migration, a registration process routes its IP information to
the host in the overlay network which has the closest UNID
to its own generated UNID. This host assumes responsibility
for storing the mobile object’s location whilst it remains ac-
tive. Should the host fail or leave the network, the host with
the next closest UNID assumes responsibility automatically.
If a process needs to contact the mobile object the discovery
process routes a location request message to the host with the
closest UNID to the mobile objects UNID in order to deter-
mine the last known location of the mobile object. As this
approach has no single point of failure it improves reliabil-
ity compared to the centralised registry and home server ap-
proaches; reduces communication costs compared to a multi-
cast based solution because it uses efficient deterministic key-
based routing instead of flooding; and achieves scalability by
distributing the management effort throughout the system.

1Due to object-oriented nature of AMOS, we use mobile object instead of
mobile code, process or agent

The remainder of the paper is structured as follows. Sec-
tion 2 outlines three existing strategies for discovering the lo-
cation of mobile code and identifies their shortcomings. Sec-
tion 3 describes the architecture of AMOS, an adaptive mo-
bile object system developed to improve the discovery of mo-
bile objects in mobile and ubiquitous environments. Section 4
presents the results of the evaluation of the registration pro-
cess and host routing strategy. A decentralised load balancing
technique that makes the best use of a heterogeneous host en-
vironment is also evaluated to illustrate the benefits of using
AMOS. Section 5 provides a brief survey of related work in-
vestigating the fusion of mobile code platforms and peer-to-
peer systems. Finally, in Sec. 6, we present our conclusions
of this work.

2 Location Discovery

Knowledge of where a mobile object is currently located
within a network is essential in order to communicate with
it. This section looks at three strategies - centralised registry,
multicast and home server - and discusses their respective ad-
vantages and disadvantages.

2.1 Centralised Registry

Perhaps the most basic way of providing location discovery
of mobile objects is to maintain a fixed host that is responsi-
ble for tracking their location throughout their life-cycle. This
centralised registry strategy is simple to implement, only re-
quiring the mobile objects to report their location to a well
known registry service and for other processes to be aware
of the service. Aglets [7] and Concordia [8] are two mobile
code platforms that make use of this strategy. Figure 1 shows
a general registry service, where dotted rectangles represent
host machines and grey circles represent mobile objects. De-
spite being efficient, this is not a robust solution, especially
when a system may consist entirely of mobile and unreliable
hosts. This strategy creates a single point of failure, and in-
troduces the potiential for performance bottlenecks should lo-
cation updates or requests be numerous.

register X

Registry
ObjID: Location
X 132.45.67.89
Y 132.34.76.81
Z 127.54.67.53

132.45.67.89

X

132.34.76.81

Y

127.54.67.53

Z

Y location?
132.34.76.81

invoke Y.foo()

Figure 1: Registration and look-up in a centralised location
discovery strategy

2.2 Multicast

A multicast strategy involves propagating a discovery re-
quest throughout a network of hosts with no reliance upon a
registry service. Emerald is a mobile code framework that
uses the multicast strategy [9]. Figure 2 shows a typical dis-
covery process where sender S propagates a location request
through the network in order to discover the location of target
T. Whilst multicast is more efficient than broadcast, it still is
costly in terms of communication because the sender floods
the network until the host containing the target is discovered.
For resource-constrained devices, network communication is
a costly activity and should to be minimised where possible.

S

132.45.67.89

T

T location? T location?

T location? T location?

T location? T location?

132.45.67.89

Figure 2: Location discovery using a multicast strategy

2.3 Home Server

The home server strategy distributes the registry of mo-
bile objects, thus improving reliability to a degree and reduc-
ing communication overhead. AgentSpace, the mobile code
framework from which AMOS is built upon, makes use of the
home server discovery strategy [10]. It operates on the prin-
ciple that each host that launches a mobile object, becomes
responsible for tracking its location throughout its life-cycle
(illustrated in Fig. 3).

Home Server

hostA hostB hostC

migrate

migrate

updateIPupdateIP updateIP

migrate

Figure 3: Registration of IP with home server

When a mobile object is launched, its globally unique iden-
tifier (GUID) includes the IP address of the host, or home
server. Every time it migrates, the mobile object contacts its
home server and notifies it of its new IP address. If another
process needs to contact the mobile object it is a simple matter
of inspecting its GUID, extracting the IP address of the home

server and contacting it with a request for the last known loca-
tion of the mobile object. Whilst this is an improvement over
the previous two strategies, it still is not robust. If its home
server fails then the mobile object cannot update its location,
and no other process can contact it. Furthermore, if one host
launches many mobile objects, it may become a performance
bottleneck.

3 Architecture

The shortcomings of the location discovery strategies de-
scribed in Sec. 2 limits the use of mobile object based systems
for mobile and ubiquitous computing environments. We now
describe the architecture of AMOS, which solves the prob-
lem of providing a reliable and scalable location discovery
strategy for mobile objects in unpredictable environments -
reducing the difficulty of developing a distributed application.
We outline the high level architecture of AMOS; detail how
the reliable location registration and discovery of mobile ob-
jects is achieved using key-based routing; and illustrate how
AMOS can make the best use of resources in a network of
heterogeneous hosts by using probabilistic methods.

3.1 Architectural Overview

Most mobile code frameworks depend upon the notion of
a host running a container process that can launch, host and
receive mobile objects. The container provides the execution
environment in which mobile objects can carry out the tasks
they have been set to complete. It also acts as a sandbox that
can enforce access control policies that prevents a malicious
mobile object from damaging the host. Mobile objects are
free to migrate to any other host that is running the container
process.

In AMOS, a network of hosts, besides running containers,
attempts to form a structured overlay network, using the pro-
tocols developed by the Pastry project [5]. An overlay net-
work is simply an abstraction over physical networking that
permits hosts to address each other with logical addresses [6].
No host has a global view of the entire network, instead each
host becomes part of a distributed hash table. A sub-set of
host addresses from the global address space are also stored
to aid message routing. This set is generally of size O(log n)
where n is the number of hosts. Hosts therefore must com-
municate indirectly by using key-based routing unless they
already know the host address that they wish to contact. Mes-
sages are deterministically routed through the overlay net-
work address space using a greedy approach, whereby a host
forwards a message to a member of its routing set that has the
closest network identifier to the target network identifier. The
performance of key-based routing is O(log n) where n is the
number of hosts.

Figure 4 illustrates a high-level view of AMOS on a single
host, where a HostManager and its associated helper compo-
nents are running in a container with other mobile objects.
When a new HostManager component is created on a host,
it uses a well known IP address (or range of addresses) to

Host Machine

Container

Overlay Network

IP Network

HostManager

L-RegistryR-Registry

HostRouter
MOs

Node

Figure 4: High-level architecture of AMOS on a single host

bootstrap itself into an existing overlay network using the
HostRouter and Node components. The bootstrap phase in-
volves choosing a unique network identifier (UNID) and de-
termining the set of other Nodes that this HostManager is
aware of. The Node manages the HostManager’s position in
the overlay network by building and maintaining a routing ta-
ble and a leaf-set of other Nodes, its part of distributed global
index. The process of bootstrapping into overlay networks is
described in greater detail in [5]. The L-Registry (local reg-
istry) is a simple component that stores the mobile objects
currently on this host, notifying the HostRouter of all mobile
object arrival events. The R-Registry (remote registry) com-
ponent stores records of mobile objects identities and IP lo-
cations that this host is currently responsible for, forming part
of the distributed index of mobile objects. The next section
explores how these components interact to handle the regis-
tration and location discovery of mobile objects.

3.2 Location Discovery
To provide a better location discovery strategy than the

strategies discussed in Sec. 2, we must be able to minimise
the amount of communication required to locate a mobile ob-
ject irrespective of network size, and ensure fault tolerance
in the face of host failures, whether permanent or temporary.
To demonstrate how AMOS satisfies these requirements, this
section details the interaction between a mobile object (MO)
and the HostManager during the registration process, and de-
scribes the location discovery strategy that allows MOs to
communicate without prior knowlege of each others location

3.2.1 Mobile Object Registration

A well designed registration service should facilite an effi-
cient, reliable and timely lookup of a mobile object’s loca-
tion. The centralised registry and home server strategies both
have the problem that if a host fails, it becomes impossible
to reach the MO. Within AMOS, an MO arriving at a host
is detected by the HostManager, which starts a registration

HostManager

L-Registry

HostRouter

Node

HostRouter

Node

arrivalEvent

addObjId

sendLocation
UpdateMsg

routeMsg receiveMsg

R-Registry

updateLocation

enrouteMsg

Mobile Object

overlay
network

Figure 5: Registration of a Mobile Object in AMOS

process. Rather than register the MO on this host, or choose
a specific host address, AMOS registration takes the novel
approach of using the GUID of the MO to generate a valid
UNID within the overlay network address space. It is not nec-
essary that a node with the generated address exists in the net-
work. AMOS handles such situations by choosing the choos-
ing the numerically closest UNID that does have a host - a
property provided by the overlay network. We therefore are
always guaranteed to get an active host to handle the registra-
tion request.

Figure 5 illustrates component interaction during the reg-
istration process. The arrival of an MO generates an arrival
event which the HostManager detects. The HostManager adds
the GUID of the MO to its local registry (L-Registry). Adding
the MO causes the local registry to notify any observers that
a new MO has arrived. The HostRouter component is one
such observer. Its purpose is to handle messages that are sent
and received using overlay network routing. Upon notifica-
tion of the arrival of a new MO, it creates a new location up-
date message containing the MO’s GUID and the host’s IP
address. This message is then dispatched to the Node compo-
nent which is the access point into the overlay network. The
Node forwards the message onwards (to the next Node within
its routing table possessing the numerically closest UNID)
based on the UNID generated from the MO’s GUID. Once
the message arrives at its destination it is registered in the re-
mote registry (R-Registry) of the HostManager component.
This completes the registration process.

This process re-occurs every time an MO migrates from
one host to another. The chief benefit of this indirect form
of registration is that should the host which has the UNID
closest to the MO’s generated UNID fail, the next active host
with the closest UNID will assume responsibility for regis-
tering the location of the MO. This process is transparent to
the MO and the HostManager attempting to register it with
another host because the overlay network takes care of the
UNID resolution.

The only situation of concern is when the host managing an

HostRouter

Node

HostRouter

Node

route
Msg

receive
Msg

R-Registry

getLocation

enrouteMsg

getObject
Location

sendLocation
RequestMsg

setObject
Location

receive
Msg

handleLocation
InfoMsg

routeDirect

setLocation

sendLocation
InfoMsg

Mobile Object

overlay
network

HostManager

Figure 6: Host Routing strategy for discovering location of a
mobile object

MO’s location information fails and the MO does not migrate
for a length of time, or ever again. Any process attempting
to contact the MO would be unable to find the host respon-
sible for storing the MO’s location. Each node in the net-
work maintains a set of other node UNIDs to facilitate rout-
ing and maintain the integrity of the network. Periodically,
this set is monitored check for node failures. AMOS lever-
ages this process by ensuring that each node replicates the re-
mote registries of the other nodes in their set. If a host failure
is detected, the discoverer can invoke the registration process
described above for all MOs in the registry belonging to the
failed host to repair the registry. This approach increases the
reliability of registering MOs and occurs transparently. By
taking advantage of the self-organising structure of the over-
lay network, we can avoid using less efficient strategies, such
as forcing MOs to re-register after a time-out of not migrat-
ing, or requiriing HostManagers to monitor MO’s that have
not recently moved.

3.2.2 Discovery of Location

With the exception of multicast, other location discovery strate-
gies involve contacting specific hosts known to manage the
location information of MOs. As noted earlier, multicast is
an expensive discovery method in terms of network commu-
nication overhead. The discovery strategy used in AMOS,
Host Routing,uses the distributed index of MOs that is created
by the registration process to achieve reliable look-up, whilst
significantly limiting network overhead. The caveat of Host
Routing is that the requester must already possess the GUID
of the target MO. As long as the requester has the GUID of
the target, then AMOS guarantees the discovery of the loca-
tion information.

To begin with, the requester contacts its local HostMan-
ager and issues a request for the location of a target MO. The
HostManager delegates the task to the HostRouter. It gen-
erates a location request message and passes it to the node,

which routes it towards the UNID generated from the target
MO’s GUID. This message is forwarded through the overlay
network until it reaches its destination, the node of the host
responsible for the location of the target MO. Upon receiv-
ing this message, the HostRouter on the remote host performs
a look-up within its remote registry using the target MO’s
GUID as a key, which returns its last known IP location. The
HostRouter then routes this information directly back to the
host machine that issued the request. Once the originating
HostManager receives the message, it calls back the requester
and informs it of the IP location for the target MO. This pro-
cess is illustrated in Fig. 6, where solid black arrows indicate
the first phase of sending the location request message and the
dotted arrows indicate the location info message generated in
response.

The requester can now communicate with the target MO
to achieve its goal. The registration process described in the
previous section ensures that the location of the target MO
will be correct. This supplies the Host Routing strategy with
its reliability. Furthermore, the actual paths that messages are
routed across to reach their destination are not fixed and the
overlay network can sustain damage whilst maintaining the
ability to route messages correctly - a property inherited from
the overlay network.

3.3 Distribution of Effort

Balancing of effort, or load, is particularly important for
mobile and ubiquitous computing environments where reli-
able and capable hosts may be in short supply. Although it
can be beneficial to migrate processes, it is important to con-
sider where to send them, and the implications of doing so. It
is preferable if the system collectively approaches a balanced
state with no global knowledge required, rather than maintain
a list of reliable resources in a network.

To achieve autonomous load balancing in AMOS, we mod-
ify the architecture in two ways: by allowing hosts to occupy
variable amounts of address space; and by modifying MOs to
prefer more capable hosts.

A single host can occupy more address space by spawn-
ing multiple nodes - in effect, making itself more ‘visible’
in the overlay network. Figure 7 demonstrates how this is
achieved by introducing a new component, the VirtualNode-
Handler. The VirtualNodeHandler acts as a multiplexer, ran-
domly choosing a single node to forward an outgoing mes-
sage, whilst passing all messages from all nodes back to the
HostRouter. This increases the probability that an MO will
arrive when migrating from one host to a randomly selected
host. Furthermore, this host will handle a greater percentage
of registration requests because there is a higher probability
that more network traffic will be handled by the host’s collec-
tion of nodes.

Although this process allows more capable hosts to han-
dle more work, it does not prevent MOs from migrating to a
resource constrained host. To to mitigate this, MOs are mod-
ified to prefer more capable hosts. They achieve this through
host introspection . Apart from requesting the location of an-

HostRouter

VNodeHandler

Node Node Node NodeNode

Overlay Network

Figure 7: Multiple nodes per single host

other MO, they can also query how ‘busy’ the host currently
is through the HostManager. At present, a HostManager de-
fines its host load by dividing a host capability metric by the
number of MOs currently active on this host. Host capability
can be customised (e.g. using a device profiling standard such
as CC/PP [11]), but for the sake of simplicity, we define it as
a numerical value reflecting the class of device the host is. A
resource-constrained device would have a low number, whilst
a fixed server would have a high number.

On arrival at a new host, an MO uses host introspection to
determine if this is a good host on which to carry out its activi-
ties. If it is not, it migrates to a random host. The MO chooses
a random host by generating a random UNID, and requesting
the IP of the host that has the closest UNID (similar to select-
ing an active host to register with) and migrates there instead.
When this random migration is combined with more capable
hosts represeneting a larger proportion of the address space
of an overlay network, effort will be distributed fairly without
needing any centralised coordination. Whilst simple, relying
purely on probability that an MO will get to a capable host,
this enables an autonomous load balancing scheme in AMOS
that fairly distributes the effort according to host capability.

4 Evaluation

This section details the evaluation of AMOS. We demon-
strate that the cost incurred using the registration process does
not significantly vary as the network size increases; the cost
of the using the Host Routing strategy is competitive with
the home server strategy whilst significantly improving re-
liability; and finally that autonomous load balancing can be
achieved using decentralised control and probabilistic meth-
ods

The following experiments were conducted using a net-
work of twenty Sun Blade workstations, running Solaris 2.5.1,
connected via 100-BaseT ethernet. This setup was chosen for
three practical reasons: it is costly to assemble a large enough
collection of mobile devices to achieve significant results (al-
though this would give a better idea of unpredictability); the
focus of the experiments is to demonstrate that the benefits
provided by AMOS come without a significant cost compared

5 10 20 40 80

0
10

20
30

40
50

60

Number of Nodes

R
eg

is
tr

at
io

n
T

im
e

(m
s)

Figure 8: Cost incurred, in time (ms), for registering a mobile
object in network of increasing size

to other methods independent of execution environment; and
AMOS is written purely in Java and uses Java RMI for all
network communication, which means that it should run on
any platform with an appropriate Java Runtime Environment.

4.1 Evaluation Methodology & Results

4.1.1 Registration costs over increasing network size

The first experiment measures how much cost, in terms of
time, is incurred when using the mobile object registration
process, detailed in Sec 3.2.1, on networks of different sizes.

The source code of the HostManager was altered to out-
put a time-stamp for the beginning and end of the registration
process for a mobile object. Because the registration process
occurs on separate machines, a Network Time Protocol server
is used to synchronise all hosts, avoiding significant clock dis-
crepancies.

A network of n nodes is created across the hosts. For each
size of network, a single mobile object is launched onto one
host. This invokes the registration process. Once complete,
the time-stamps can be subtracted to give the total time it took
to register the mobile object. This is repeated 10K times for
each size of network. The results are shown in Fig 8.

As the network increases in size, the average cost to register
a mobile object remains mostly within the range of 25–40ms.
The median value is shown as a thick horizontal line. The
box represents the range of registration costs falling within
the 25th and 75th percentiles, and the whiskers represent the
5th and 95th percentiles. The narrow ranges suggest that for
each network size, registration cost remains consistent.

RMI HomeServer HostRouting

0
20

40
60

80
10

0
12

0

Discovery method

T
im

e
(m

s)

Figure 9: Completion times for RMI look-up, Home Server
and Host Routing strategies

4.1.2 Location discovery of a mobile object

The second experiment measures the cost, in time, of discov-
ering the location of a mobile object using the Host Routing
strategy compared to the home server strategy. We measure
the total time it takes to discover the location and invoke a
method upon the remote mobile object.

Two mobile objects, Caller and Receiver are launched into
the network of hosts. The Receiver migrates to a randomly
selected location in the network and waits. The Caller then
attempts to discover where the Receiver is, using each of the
discovery strategies. Firstly, as a benchmark for comparison,
the Caller uses Java RMI with the known IP location of the
Receiver to invoke a method. This measurement indicates the
network cost without any discovery process. Secondly, the
Caller uses the Home Server discovery strategy provided by
AgentSpace to invoke a method on the Receiver. Finally the
Caller uses the Host Routing strategy to discover the location
of the Receiver. Each attempt to discover and invoke a method
is repeated for 10K iterations, mitigating the effects of any
host or network anomalies. Figure 9 shows a series of box-
plots that summarise the completion time for each method.

The Host Routing strategy is more costly than the home
server method with mean completion times of 91.5sms and
67.4ms respectively and displayed a wider distribution of re-
sults. We believe that ≈ 25ms is a reasonable extra cost when
the reliability and self-healing properties of Host Routing is
taken into consideration. AMOS automatically repairs the
registry when a host fails so there are no extra costs incurred,
justifying the slight increase in discovery time.

4.1.3 Autonomous Load Balancing

Because mobile and ubiquitous computing environments will
most likely consist of a collection of devices that have dif-

Decision A (1n) B (2n) C (4n) D (6n) E (8n)
0 500 0 0 0 0
1 11 48 100 160 181
2 8 48 99 155 190
3 8 50 94 152 196

Optimal 24 47 95 144 190

Table 1: Distribution of mobile object population after three
decisions

ferent capabilities, it makes sense to make optimal use of
the resources available. However, with no prior knowledge
of which devices are more capable than others, optimality is
difficult to achieve. This experiment illustrates how using
AMOS will ensure that a population of mobile objects will
attempt to make best use of the available resources, whilst
avoiding resource-constrained devices.

We use the host capability measure outlined in Sec 3.3 to
vary the number of nodes that a HostManger deploys. For the
purpose of this experiment, we simulate a range of devices
with various capabilities. Type A is a resource constrained
device and will only deploy one node, whereas type E is a
more capabale device that will deploy eight nodes. We build
a network using five of each device type.

To create a ‘worst case’ load scenario, we populate one type
A device with five hundred mobile objects. Each mobile ob-
ject waits a random amount of time, uses host introspection
and makes a decision whether to stay or migrate to a random
location. Table 1 illustrates how the population of mobile ob-
jects distributed themselves after three decisions. It is clear
that just after one round of decisions the distribution is already
approaching optimal in the sense that higher capability hosts
are handling more mobile objects. The optimal proportion of
hosted mobile objects for each device type is calculated by
P = M(D×F

N), where M is the total number of mobile ob-
jects, D is the number of devices of this type, F is the number
of nodes deployed, and N is the total number of nodes.

However, it is not clear if significant oscillation is occuring
where a mobile object may be constently switching between
devices. Subsequent runs created similar distributions of mo-
bile objects across the devices. The shape of this distribution
is easily controlled by the choice of how devices are classi-
fied. Whilst this example is artificial, it illustrates how the
design of AMOS can be easily extended to achieve decen-
tralised control, in this case balancing the load proportionally
throughout the network of hosts.

5 Related Work

This section gives a brief overview of existing mobile code
frameworks and peer-to-peer (P2P) systems. We also discuss
an earlier project with the goal of combining these technolo-
gies to provide reliable agent communication, and compare
its performance to that of AMOS.

5.1 Mobile Objects and Agents
The majority of existing mobile object and agent platforms

make use of the object location strategies described in Sec-
tion 2. Aglets [7] and Concordia [8] implement a centralised
registry, whilst AgentSpace [10] and Adjanta [12] use home
server based techniques. Emerald [9] uses a multicast strategy
as backup to its primary technique, which involves a mobile
object leaving a forwarding pointer on migration.

Although applicable in many domains, such as parallel pro-
cessing and distributed search, there are none where mobile
agents are unique in providing a solution. Other technolo-
gies can usually be used in combination that yield equal or
better performance results. However, mobile agents provide
a generic framework with which to easily implement a wide
range of distributed applications. The technology excels in
dealing with dynamic or volatile network environments, with-
out requiring the developer to a master a number of applica-
tion specific techniques.

5.2 P2P Overlay Networks
Overlays that provide an address space over a subset of a

network are a useful tool for managing a population of hosts
in a distributed system. Such isolation allows service partici-
pants to see only each other, and allows properties of the over-
lay to be fine tuned to meet overlay specific needs (e.g., re-
silience or locality). This project is interested in P2P overlays,
for their capability to provide object location, messaging, and
node organisation in ad-hoc networks. Such overlays also
provide population management features (self-organisation and
self-repair) that are essential for the management of ad-hoc
networks.

AMOS is built on top of Pastry [5]. Pastry supports ap-
plication level message routing and object location in a large
overlay network of nodes. When given a message and a node
ID (key), Pastry efficiently routes the message to the node
with the ID that is numerically closest to the key among all
live pastry nodes. The expected number of routing steps is
O(log n) where n is the number of nodes in the network.

Other P2P overlays such as CAN [3] and Chord [4] pro-
vide hash table like functionality. Chord maps keys to nodes
and provides an O(log n) routing-hop lookup algorithm that
can be used to find the IP address of the node responsible for
any given key. CAN maps a virtual d-dimensional Cartesian
coordinate space across all participant nodes, with each node
responsible for all points within a given zone. The number of
routing-hops in the CAN lookup algorithm grows faster than
O(log n).

5.3 Hybrid Approaches
Although mobile objects and agents have long been touted

as a promising technology for use in ad-hoc networks, exist-
ing object location algorithms have lacked the robustness and
efficacy required for such environments. In this section we
compare AMOS to another system which has tried to address
this problem through the use of a P2P overlay, Armada [13].

Armada is an agent communication system built on top of
Tornado [14]. In Armada, a community of agents running
on a set of hosts autonomously manage their communication.
Each agent has a GUID, and keeps a list of other agents that
it knows how to send messages to. If an agent wishes to
send a message to a node that it does not know how to con-
tact directly, it looks up the agent whose key is numerically
closest to, but lower than the key of the destination home.
This receiving node then repeats this process until the mes-
sage reaches its destination. Multiple communities of agents
may run on the same set of nodes, but use only agents in the
same community to aid routing.

On joining a community, an agent constructs a set of point-
ers to nodes in the community. Agents periodically perform
a secondary algorithm to ensure that they maintain pointers
to the closest neighbouring set. On migration, a mobile agent
updates its location in the community by finding the agent
platform numerically closest to its own. An agent on that
node receives the updated location of the agent and joins a
community of agents responsible for storing the location of
mobile agents in the community.

From the results in [13], Armada appears to perform best
when the size of a community of agents is small. The num-
ber of messages required for an agent to join a community
is O(log a), where a is the size of the agent community. This
can be compared to O(log n) messages for an AMOS agent to
register, where n is the number of nodes in the network. Ar-
mada incurs a cost of O(log a) + O(log a)2 messages every
time an agent migrates to update its community. In AMOS,
agent migration requires O(log n) messages to be sent. Fi-
nally, sending a message to an Armada agent requires 2 ×
O(log a) messages to be sent, whilst in AMOS this figure is
O(log n).

We conclude that for registration and messaging, the rela-
tive performance of each system is highly dependent on the
ratio of agents to nodes in the network. However, the poor
performance of the update operation in Armada, and the re-
curring need for each agent to recalculate its closest neigh-
bouring set restricts its applicability to large agent communi-
ties and highly dynamic networks. As the size of the agent
population has no bearing on AMOS’ performance, it is more
suited to such environments.

6 Conclusion

The task of developing software for mobile and ubiquitous
computing environments is challenging, but the use of mobile
code provides one route to easing the difficulty. This paper
has introduced AMOS, a mobile code framework that was
augmented with a structured overlay network. This fusion
provides an elegant solution to the location discovery prob-
lem. Host Routing is reliable, scalable and is competitive
against other strategies. It removes the single point of failure
issue of centralised registry and home server strategies. It also
minimises communication overhead, costing ≈ 25ms more
than the home server strategy, whilst maintaining O(log n)
complexity. Finally, an autonomous load balancing scheme

was presented that demonstrated how a population of mobile
objects can distribute themselves fairly across a network of
mixed capability devices. This approach required no global
knowledge, instead relied upon simple probabilistic methods.

REFERENCES

[1] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding
code mobility. IEEE Transactions on Software Engi-
neering, 24 (5):342–361, 1998.

[2] A. Zaslavsky. Mobile agents: Can they assist with con-
text awareness? In Proceedings of the IEEE Int. Conf.
on Mobile Data Management (MDM’04), 2004.

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
Scott Schenker. A scalable content-addressable net-
work. In Proceedings of the 2001 Conf. on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communications, pages 161–172. ACM Press,
2001.

[4] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and Hari
Balakrishnan. Chord: A Scalable Peer-To-Peer Lookup
Service for Internet Applications. In Proceedings of the
2001 ACM SIGCOMM Conf., pages 149–160, 2001.

[5] A. Rowstron and P. Druschel. Pastry: Scalable, Decen-
tralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. Lecture Notes in Computer Sci-
ence, 2218:329–350, 2001.

[6] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim.
A survey and comparison of peer-to-peer overlay net-
work schemes. IEEE Communications Survey and Tu-
torial, 7 (2), 2005.

[7] B. Venners. The architecture of aglets, April 1997.
[8] T. Walsh, J. DiCelie, M. Young, D. Wong, N. Paciorek,

and B. Peet. Concordia: An infrastructure for collab-
orating mobile agents. In Proceedings of the 1st Int.
Workshop on Mobile Agents (MA ’97), 1997.

[9] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-
grained mobility in the Emerald system. ACM Transac-
tions on Computer Systems, 6(1):109–133, 1988.

[10] Agentspace. http://www.agentspace.co.uk.
[11] CC/PP: http://www.w3.org/mobile/ccpp.
[12] A. Tripathi, N. Karnik, T. Ahmed, R. Singh, A. Prakash,

V. Kakani, M. Vora, and M. Pathak. Design of the ajanta
system for mobile agent programming. Journal of Sys-
tems and Software, 62(2):123–140, 2002.

[13] H-C. Hsiao, P-S. Huang, A. Banerjee, and C-T. King.
Taking advantage of the overlay geometrical structures
for mobile agent communications. In IPDPS, 2004.

[14] H-C. Hsiao and C-T. King. Tornado: a capability-aware
peer-to-peer storage overlay. Journal of Parallel and
Distributed Computing, 64(6):747–758, 2004.

