Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Study of structural change in Wyodak coal in high-pressure CO2 by small angle neutron scattering

Mirzaeian, Mojtaba and Hall, Peter J. and Jirandehi, Hasan Fathinejad (2010) Study of structural change in Wyodak coal in high-pressure CO2 by small angle neutron scattering. Journal of Materials Science, 45 (19). pp. 5271-5281. ISSN 0022-2461

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Small angle neutron scattering (SANS) has been applied to examine the effect of high-pressure CO2 on the structure of Wyodak coal. Significant decrease in the scattering intensities on the exposure of the coal to high-pressure CO2 showed that high-pressure CO2 rapidly gets adsorbed on the coal and reaches to all the pores in the structure. This is confirmed by strong and steep exothermic peaks observed on DSC scans during coal/CO2 interactions. In situ small angle neutron scattering on coal at high-pressure CO2 atmosphere showed an increase in scattering intensities with time suggesting that after adsorption, high-pressure CO2 immediately begins to diffuse into the coal matrix, changes the macromolecular structure of the coal, swells the matrix, and probably creates microporosity in coal structure by extraction of volatile components from coal. Significant decrease in the glass transition temperature of coal caused by high-pressure CO2 also confirms that CO2 at elevated pressures dissolve in the coal matrix, results in significant plasticization and physical rearrangement of the coal's macromolecular structure.