
A calendar based Internet content pre-caching agent for
small computing devices

Andreas Komninos
Glasgow Caledonian University

70 Cowcaddens Rd.
Glasgow, G4 0BJ, UK

+44 141 331 3095

andreas.komninos@gcal.ac.uk

 Mark D. Dunlop
University of Strathclyde

26 Richmond St.
Glasgow G1 1XH
+44 141 548 3497

mark.dunlop@cis.strath.ac.uk

ABSTRACT
We described in earlier publications the principles of a system
where internet content would be pre-cached, based on contextual
information obtained from a user’s electronic calendar. The model
for such a system envisioned a set of cooperating agents,
distributed on a user’s desktop and mobile device, which would
be responsible for making decisions on the context and
preferences of the user, and downloading the relevant internet
content through a land-based broadband connection and storing it
on the mobile device. This paper presents and discusses
established pre-caching techniques and their suitability for use on
mobile information access scenarios. It proceeds in describing the
implementation details of an alternative approach, a calendar-
based pre-caching system and presents the findings of tests that
were made with human subjects on such a system.

Keywords
Mobile Information Access, Electronic Calendars, Internet
content Pre-Caching.

1. INTRODUCTION
Motivated by the disparity of desktop and mobile Internet access,
both in terms of available bandwidth and in terms of cost, this
paper presents research into an alternative method of making
Internet content available for mobile users. This method is based
on the extraction of contextual information regarding the user’s
activities and interests using their electronic calendar as a main
source, and pre-loading their mobile device with Internet content,
using a land-based connection.
The main aim of the research presented in this paper is to
investigate whether calendars can indeed provide information that
can be used to pre-fetch useful Internet content for mobile users.
While it is expected that such an approach cannot fulfil the
entirety of Internet content needs for a user, the work presented
here provides evidence to the extent to which a mobile cache can
be populated with relevant documents that the user could find of
interest.
Further to this, this research is concerned with the potential of
calendar entries to be used as sources for web query generation,
independently of the entry brevity and without the direct
involvement of the user. This is an essential step for the
investigation of the aforementioned aims, given that an
appropriately formulated web query would have a better chance
of retrieving relevant documents and thus populate the mobile
cache with more appropriate results.

Finally, this paper shows that it is indeed possible for a predictive
pre-caching system to efficiently adjust itself to the preferences
and circumstances of the user as an individual, in order to obtain
optimal retrieval performance.
While not directly related to the main aims of this research, we
report further results and findings which concern the usability and
interaction patterns within electronic calendars, the document
reading behaviour on mobile devices and the suitability of
implicit interest indicators for information retrieval on mobile
devices.

2. MOTIVATION AND CURRENT PRE-
CACHING TECHNIQUES
One of the basic issues in the problem of effectively pre-caching
internet content needs, whether on a large scale, such as in servers
or proxies, or on a personal level, is the determination of exactly
which documents should be pre-cached. Taking this decision at a
level that allows for maximum personalization, involves the
observation of a user’s behaviors, in order to create suitable
models that would encompass these behaviors and allow accurate
predictions to be made.
One of the earliest attempts at the automatic prediction and
retrieval of internet content was described by Balabanovic et al. in
1995 [1]. The system described there forms a model of each
user’s preferences and continuously adapts itself to reflect the
user’s opinions of the content that is prefetched. The user is
presented with a collection of hyperlinks to documents that the
system has identified as potentially interesting. There is an option
for the user to explicitly rate each link (from +5 to -5), therefore
providing the system with simple relevance feedback. Even
though the scheme employed by the researchers is a relatively
straightforward approach, they succeeded in proving that there are
significant gains that can be made through the personal profiling
of users.
Wang and Crowcroft [2] discuss the some tradeoffs between pre-
fetching and the improvement of latency in the WWW. Also, they
present an implementation of a deterministic pre-fetching
approach, called Coolist. Their system is layered between the
client and the proxy server and organises websites in folders.
These folders can then be assigned three methods of pre-fetching.
Batch pre-fetching is the first method, where a site is scheduled
for downloading at a given date or time. Another method of pre-
fetching is described by the term “start-up” and means that a site
will be pre-fetched when Coolist is invoked. Finally, their third
proposed method is pipeline pre-fetching, where sites are grouped

Please see journal for final version – this is a late draft

for pre-fetching. When the first page in a group is requested, the
next one will be automatically pre-fetched, regardless of the fact
that a user may have not requested it.
Another discussion of the advantages of pre-fetching was carried
out by Cunha and Jaccud [3], who proposed two algorithms for
the prediction of the user’s next action while browsing the web.
Their first algorithm, using Random Walk approximation,
projects the long-term interaction trend, while a second algorithm
focuses on the short term trends. Using a model described by
Thiebaut in 1989 [4], which relates the accumulated number of
cache misses to a program’s random walk range, the researchers
show that it can be successfully applied to characterise users’
strategies, under the hypothesis that these relate to an infinite
browser’s cache. This model is mathematically described as
follows:

1,1,)(/1 ≥>>= θθ rArrN

In this equation, r is the number of references, N(r) is the
accumulated number of misses, θ sets the curve growth pace, and
A is a constant. A second method is described within the same
report, which uses an algorithm of two phases: Firstly, a
preparation phase computes the first order difference of the
envelope of the user’s profile curve, displaced by a factor of 0.5
(for ease of detecting behaviour changes). Secondly, the
prediction phase determines how conservative the user was in the
last t accesses. Also, a determination of how much history is
made, based on that count, in order to compute the desired set of
coefficients that minimise the short-time prediction error, around
a vicinity of size n, for a sample at virtual time r. A routine, based
on Durbin’s method to calculate the linear prediction coefficients
is then called, and lastly, the predicted value is computed as a
linear combination of the past NCOEF terms. The authors show
that both user models manage to achieve a degree of accuracy
around 85%, which can be applied in conjunction with pre-
fetching techniques.
In his technical report, Palpanas [5], investigated the feasibility of
using a model based on the partial-match prediction algorithm, for
pre-fetching documents from the web. In his model, a pre-caching
agent acts as an intermediary between the client and the server(s)
that a user is connected to in a session. Having taken into
consideration the special characteristics of the Web and after
tailoring the algorithm to accommodate those, the author
concludes that his proposed scheme’s implementation is feasible
and that it would be assistive to users who “consistently follow
regular access patterns, when searching for information”. This
conclusion is reached through simulations, run on the access log
files of the web server of the department of computer science, at
the University of Toronto.
Jiang and Kleinrock [Jian98a] presented in 1998 a system in
which pre-fetching is decided by the client, based on usage
statistics about embedded HREF tag attributes. In their work, the
client monitors its available bandwidth continuously and pre-
fetches web content, choosing however not to pre-fetch images, in
order to save bandwidth. An algorithm to decide which pages
should be pre-fetched is used, based on the client’s access history
combined with the server’s access histories for each file they
hold. Further filtering on the decision process is placed by placing
an upper bound on the pre-fetch threshold, which is a function of

the system load, capacity and cost of a time unit and a system
resource unit. This two-tier decision process allows the system to
maximise the performance gaining that can be achieved through
pre-fetching.
Further application of Jiang and Kleinrock’s work is found in
another paper that investigates pre-fetching for mobile users
[Jian98b]. Interestingly, in this paper, the authors extend their
prediction algorithm to achieve higher hits, by assigning users to a
category (such as those interested in database research), amongst
other things. The second component of their scheme is a server
threshold model, which judges whether a page should be pre-
fetched based on:

• The amount of time that may be saved by pre-fetching a

file that may be needed

• The amount of bandwidth that will be wasted if the file

is not used;

• The impact of the pre-fetch request on other users

whose normal requests may be delayed by the pre-fetch

request.

The latter is a necessary consideration in order to ensure that the
overall system performance can be improved by pre-fetching the
file. The authors proceed to conclude that their approach is well
suited to mobile users, who may need to switch between different
network connection methods (modem, broadband, satellite,
wireless). This is because the separate server threshold module
allows the adaptability of the prediction algorithm, ensuring the
best possible performance under each network condition.
A simpler implementation than the one by Ziang and Kleinrock
was proposed with the WCOL system, by Chinen and Yamaguchi
in 1997 [8]. Their system is a research prototype that pre-fetches
embedded hyperlinks top-to-bottom without regard to likelihood
of use. Embedded images of pre-fetched pages are also pre-
fetched. Bandwidth waste can be capped by configuring WCOL
to pre-fetch no more than a certain number of hyperlinks, and no
more than a certain number of images embedded within pre-
fetched hyperlinks.
In 1999, Dan Duchamp [9] presented his own work on pre-
fetching hyperlinks, based on a predictive algorithm at a client
level, which is however able to communicate usage statistics from
the server. Because the client is unable to form an objective view
of the usage for a given web page, unless that page is visited often
by the user, it passes on to the server the current usage statistics it
has obtained, but also demands the aggregated statistics for that
page, as held by the server. The performance results obtained by
an implementation of the aforementioned idea were strongly
encouraging. For example, of all the pre-fetched pages, a figure of
62.5% was eventually used. An improvement in latency of the
order of 52.3% was observed, while notes for the consideration of
network overhead due to the usage reports are being addressed.
Further concerns regarding the size of the modifications necessary
to the browser (Mozilla) and the execution time overhead due to
these, are eased, since these do not appear to be significant.

Continuing on the theme of document pre-fetching on a
personalised level, more related work was carried out by Fan et al.
[10] in 1999. They propose pre-fetching at a proxy level, under
the argument that because proxies can collect access histories for
limited numbers users, this would present significant advantages
over server-level pre-caching, since servers would be able to only
collect access histories for the entire WWW population. An
investigation of prediction by partial match algorithms follows in
their work, followed by a simulation which shows an
improvement in latency between low-bandwidth clients and
proxies, of the order of ~23%
Pitkow and Pirolli [11] explore predictive modelling techniques
that attempt to reduce model complexity while retaining
predictive accuracy. The techniques merge two methods: a web-
mining method that extracts significant surfing patterns by the
identification of longest repeating subsequences (LRS) and a
pattern-matching method that embodies the principle of weighted
specificity. Their work is largely motivated by previous studies by
Schechter, Krishnan, and Smith [12], who utilized path and point
profiles generated from the analysis of Web server logs to predict
HTTP requests. Also, much reference is made to the work by
Padmanabhan and Mogul [13], who describe the efficiency of
Markov Models for pre-fetching. The authors use the definition of
Longest Repeating Subsequence by Crow and Smith [14], which
contains the following terms:

• Subsequence means a set of consecutive items

• Repeated means the item occurs more than some

threshold T, where T typically equals 1

• Longest means that although a subsequence may be part

of another repeated subsequence, there is at least one

occurrence of this subsequence where this is the longest

repeating.

Two models are proposed, firstly a hybrid LRS model which
extracts LRS patterns from a training set and uses them to
estimate a 1st order Markov Model. This model is compared
against a 1st order Markov model estimated from all the paths in
the training data set. The second hybrid model proposed is one
that decomposes the extracted LRS subsequences into all possible
n-grams of various lengths. This is called the All Kth Order LRS
model, as all orders of k are able to make predictions. This model
is compared against an All-Kth-Order Markov model derived
from all the possible subsequences, decomposed into varying
length n-grams. Further simplification is added to their web
surfing model, by assuming that surfing paths have an average
branching factor b. Surfers may start in b places and from each
page, they move on to one of b pages on average. By assuming
that surfing paths of length S can be divided into S/k subpath
partitions (0<k≤S), the complexity cost C(k), in terms of the
number of patterns as a function of k can be described as

∑
=

=
S

i

ibiSSC
1

)/()(

Through analysis of the applied methodology, the
authors showed that in the case of modeling paths under the first
hybrid model, the reduced LRS model was able to match the
performance accuracy of the 1st order Markov model while
reducing the complexity by nearly a third. They also then showed
that overall hit rates could be raised by including the principle of
specificity, with the All-Kth-Order LRS model almost equaling
the performance of the All-Kth-order Markov model while
reducing the complexity by over an order of magnitude. Finally,
within their findings, it was further shown that increasing the
prediction set has a dramatic impact on predictive power, with the
predictive power of each method nearly doubling by increasing
the set size to four elements.

Swaminathan et al. presented in 2000 [15] a study of
web pre-fetching which is based on the characterisation of the
web client alone, without depending on server or proxy side
algorithms.

Figure 1: Operational principles diagram (Swaminathan et

al.)

The above figure shows the principle of the system as
described by the authors. The input stream consists of symbols
representing the URLs. The learning module learns the trend in
visit counts associated with the past n URLs and the order of
URLs visited and it is implemented using genetic algorithms. The
comparison module compares the predicted and the actual streams
and provides feed back of the error in prediction to the learning
module. The generative module attempts to predict the next k
URLs that might be visited for possible pre-fetching. Finally, the
pre-fetching module decides which URLs to actually pre-fetch
based on constrains such as available bandwidth, recommendation
from the server and the state of the web client. In their research,
the authors highlight the problem of dynamically generated
Internet content, which renders pre-fetching approaches useless.
Indeed, given the trend to deliver highly customisable content to
users and the generic structure that is “populated” by dynamic
articles, which now forms the basis of many major sites, the
validity of the pre-fetched content becomes an important issue.
An interesting point in this research was that the authors manage
to prove, through simulation on actual client traces, that their
proposed pre-fetching technique allows the maintance of client

cache hit ratio of around 13% on average, even when all the
visited URLS are dynamic.
Interesting research on proxy cache was also presented by Foygel
and Strelow in 2000 [16]. The authors propose a system of
hierarchical proxy caches, where their algorithm observes
requests to a cache and its ancestors, before initiating pre-fetching
for the predicted future requests. This would only happen if the
pre-fetching action is deemed likely to reduce the overall latency
experienced by the cache’s clients. Their algorithm is based on
the continuous evaluation of the usefulness of each document in
the cache, but also of documents that are not in the cache, but are
likely to be needed in future requests. The set of documents
(fetched or un-fetched) which has the greatest esteemed value is
kept in the caches. In their conclusions, the authors argue that a
hierarchical cache network structure is the ideal foundation on
which pre-fetching can yield significant performance gains.
Again, however, they highlight the concern over increased
network utilisation, although they argue that it is often the case
that because traffic is added to under-utilised networks, the
performance gains can be obtained without significant cost.
Brian Davidson [17] presented an article in 2002, which relates to
predicting web actions from HTML content. In his work, he
compared the simplistic approaches so far taken for pre-fetching
based on HTML content, with an information retrieval-based one
that ranks the list of links using a measure of textual similarity to
the set of pages recently accessed by the user. These simple
approaches vary, but examples are namely pre-fetching all
hyperlinks in a page, or pre-fetching all hyperlinks in a serial
manner, as time allows.
The algorithm used for measuring the similarity between two text
documents (D1, D2) is

∑=
wall

DwTFDwTFDDTextSim
_

2121),(*),(),(

(TF(w, D1)= the number of times term w appears in D1)

Having compared text-similarity-based ranking methods to simple
original link ordering and a baseline random ordering, the author
found that similarity-based rankings performed 29% better than
random link selection for prediction, and 40% better than no pre-
fetching in a system with an infinite cache.
The ideas of Davison are implemented in Mozilla, an open-source
web browser and a technical report is made in 2003 by Zhang et
al. [18], who incorporated the aforementioned content-based
prediction algorithm with the history-based prediction described
in another work by Davison [19].
Further related research, however not immediately a document
pre-caching technique in its own right, was presented by Cohen
and Kaplan [20] in 2000. Their proposal is that in order to
overcome potential problems in the validity of cached documents,
and other problems that relate to the increased network utilisation,
which in turn might cause clients to experience even more
latency, one could pre-fetch (rather, pre-execute, one might add)
the means of getting a document, rather than the document itself.
This is because of the observation that the actual steps required
for the setup of a connection, are relatively costly in terms of
time. A suggestion is made that this pre-transfer prefetching
could be accomplished by

• Pre-resolving, which means that the browser or a proxy
could perform a DNS lookup before a request to a
server is issued, therefore eliminating the DNS query
time from user-perceived latency

• Pre-connecting, where the browser or a proxy
establishes a TCP connection to a server, prior to a
user’s request. This should address the problem of
connection establishment time, which is significant
compared to HTTP request response times.

• Pre-warming, or, in other terms, sending a dummy
HTTP HEAD request prior to the actual request, in
order to address the problem of start-of-session latency
at the server, which tends to be larger for first-time
requests than follow-up requests (the server is referred
to as being “cold” or “hot”, once a request has already
been issued).

The tests conducted in this research show a significant decrease in
average latency times, proving that pre-fetching the means for
getting a document is a useful technique that can be applied to the
problem of reducing overall latency.

3. LIMITATIONS OF CURRENT
RESEARCH
The techniques presented in these research papers describe the
process of pre-caching documents in a dynamic manner, whilst
however presuming that the user has a currently active connection
and is using (surfing) the Internet. Although all of the concepts
are largely relevant and indeed of great interest, they suffer from
the disadvantage that network connectivity is a pre-requisite and
is essential to their operation.
In mobile devices such as PDAs and Smartphones, network
connectivity is not a transparent service which is normally
available under typical operating circumstances, such as on
modern broadband-connected desktop computers. Indeed,
network connectivity depends heavily on the location of the user
and the strength of wireless network signals, the interference of
nearby radio-wave emitting devices with network antennae, the
subscription to co-operating networks, the present load of the
wireless network and the type of wireless network connectivity
supported by the mobile device hardware. All of these factors are
commonly present in everyday situations and make the likelihood
of network unavailability rather high.
Further to this, most of the aforementioned pre-caching models
make no, or very little, consideration of the bandwidth used to
pre-fetch files which will never be used and assume a practically
unrestricted local (or proxy) cache. With mobile devices, one has
to consider that the available bandwidth is generally very limited,
as well as extremely costly, as the charging mechanism is per unit
of data (typically KB), rather than time, when using connections
that provide acceptable surfing speeds (GPRS, 3G). Additionally,
the devices themselves offer very little memory capacities, thus
placing significant constraints on the size of caches that can be
created for web surfing. It can therefore be generally concluded
that current predictive pre-fetching models cannot be directly
applied

Given the high probability of network unavailability in the daily
environment, internet content pre-caching seems a logical
solution to partially solving the problem of mobile information
access. However, pre-caching, as described in aforementioned
research, is a technique that is largely inapplicable (or even
unacceptable), due to the significant cost and the charging
mechanism for accessing the Internet over a wireless connection.
In fact, given the charging per Kilobyte that most service
providers adopt for GPRS and 3G, it would seem obvious why a
user might want to initiate data transfer from the Internet as only
they deem necessary. Wi-Fi networks on the other hand are a lot
less expensive but are very limited in range, thus preventing true
mobility.
Another type of solution to pre-caching Internet content is
common to several types of mobile devices are not equipped with
wireless connection (actually even to devices that have integrated
wireless capabilities), but have software for browsing the web
already installed. Users of devices such as the ones we described,
tend to resort to commercial programs such as AvantGo, that
provide a means of pre-caching selected or interesting pages
based on declared user preferences and storing them for off-line
browsing. However, such services offer static, rather than
dynamic personalization, and depend heavily on explicit user
instruction on the (limited) type of content that should be pre-
cached.

4. A PREDICTIVE PRE-CACHING
SYSTEM FOR MOBILE DEVICES
Information access relates strongly to the individual user’s
interests, which rise from general, always valid (permanent)
preferences (e.g. aviation news will always interest an aviation
enthusiast, regardless of their profession). Information access also
is strongly dependent on preferences which can vary, according to
the task the users are, or anticipate to be engaged in. While the
knowledge of both contexts under which information access
might be desirable are necessary for pre-caching useful
information, in our research, we focus more on the automatic
prediction and comprehension of the activities a user might be
engaged in, in the near future.
Thus we hypothesized that it would be possible for a personal pre-
caching algorithm to examine a user’s electronic calendar as a
source of information that it could use, in order to make dynamic
informed predictions about the user’s future tasks and provide
useful content to the user. While it may be unrealistic to expect a
calendar-based pre-fetching algorithm to describe all of the user’s
preferences and content needs or desires in a perfect manner, we
expect that content that is relevant to the user’s daily interests can
be picked up. Further more, we were interested in investigating
whether permanent user preferences can be captured in order to
tailor the quantity and quality of the content better to suit the user.

5. THE PRE-CACHING SYSTEM
5.1 Overview
To explain the principles of operation behind the system we
propose, it might be useful to present an example scenario. Let us
consider the following example: Each entry in the user’s calendar
should contain at least one keyword, which will help us
understand the nature of the activity denoted by the entry. If a
calendar entry contains a keyword such as the name of a city (e.g.

Edinburgh), of which the user is not a resident, it can be assumed
that the user will be present at that location for some purpose
which is possibly described elsewhere in the entry. Typical
information about cities could then be downloaded through web
searches such as “Edinburgh map”, “Edinburgh accommodation”,
“Edinburgh Museums” etc. Also, further and more specialised
searches, formed through combination with other information
retrieved from the calendar entry, can be conducted, e.g.
“Edinburgh Holiday Inn” or “Edinburgh HCII2004 conference”.
The predictive system can then be enhanced over time through
use of implicit or explicit feedback to learn and remember a users’
preference for different categories of information, e.g. more
interested in transport links than hotels. Such a predictive system
should be able to obtain information from the user directly and
indirectly. The majority of information should be obtained
through indirect means, in order to minimise interference with the
user’s other activities. However, the system should maintain its
ability to directly interact with the user, in order to resolve any
possible uncertainties.
In previous work [21], we described the overview principles for
our pre-caching system, whose software comprises of two core
modules, each of which encompasses a number of cooperating
agents. The first module resides on a desktop computer and works
in order to extract entries from the user’s electronic calendar. It
then uses the desktop’s connection to pre-cache documents. The
second module is responsible for presenting the pre-cached
content on the user’s mobile device and therefore resides therein.
The second module is also responsible for evaluating the user’s
interactions with the pre-cached content and passes back this
information to the desktop module, which then uses it to make
more informed guesses at what it needs to pre-cache.

Figure 1. Overview model of the system components

5.2 Identifying keywords
One of the most important problems that the system needs to
solve is the identification of keywords within the calendar entries,
which can be used to initiate the process of web query
formulation. To achieve this, a database of known keywords
(identifiers) could be kept, against which the system would
compare the content of the calendar entries.
In order to train the system with the ability to recognise potential
keywords, it was decided that an analysis of the contents of a
sample of real world calendars would be necessary. The scope of
this analysis would be to determine firstly which suitable words
and of what types, would be frequently encountered in a calendar.

Subsequently, in order to confirm previous early research on
calendars, an attempt would be made to identify calendar entry
categories, so the list of keywords for these could be
supplemented with other words that belonged to similar contexts.
For example, if the analysis was to show that placenames
(“Glasgow”, “Edinburgh”) were common occurrences, then an
appropriately extensive list of placenames would need to be
compiled. These keywords in essence are identifiers for the
categories they represent.
Although early research by Kincaid and Dupont [22] had
highlighted some of the categories of entries commonly
encountered in calendars, it was felt necessary to re-investigate
this matter, firstly due to the age of the preceding research (which
was not based entirely on electronic calendars), and secondly to
tune the system performance for use by individuals in an
academic context. Because the subjects of our final experiments
were expected to be from an academic environment, it appeared
reasonable to attempt to gear the system towards the
particularities of the academic community. The system could have
similarly been geared towards other professional areas or could be
tailored towards a general population. This would require the
selection of appropriate test subjects and since the comparison of
performance on different target groups is not part of the scope of
this research, the academic sample and subjects were judged to be
appropriate and adequate.
From our research in the categorization of entries, it immediately
became clear that the calendar entries tend to fall within specific
categories. The categorisation of the entries was done manually,
with guidance from the original entry authors, where ambiguity
made it necessary. This categorisation comes as a confirmation of
the findings of previous research, and especially those of Kincaid
and Dupont, who discovered that users tend to use their calendars
mainly to keep a record of meetings, appointments, events, travel,
reminders, notes and as “to do” lists. This, in turn, suggests that
there is a consensus to the items that form appropriate calendar
entries and that there is a common mental representation model
for the organization of these entries amongst humans. There is a
slight variation in the categorisation of entries that was made with
these new findings, although this can be considered natural, due
to the particularities of the academic environment. However, the
categories with the highest frequency are the same as those in
previous research. The table below shows the categories and entry
frequencies as derived from this research’s sample.

Category Frequency

Meeting (Group) 53

Meeting (another person) 25

Reminder 18

Travel 13

Social event 13

Work task 10

Class (to attend) 10

General Task (to-do) 7

Miscellaneous 7

Birthday 5

Table 1: Calendar entry categories and their frequencies

It is important to stress here that these categories reflect the
opinions of the calendar users, who are highly familiar with the
context of their entries. One can observe that there is some
overlap between the calendar entries, for example, Birthday could
be considered a subset of Social. However, where such overlap is
maintained, it is because there was a strong indication from the
users that such a low-level category is significant and should exist
separately from its high-level parent.
The database of category identifiers which would be compiled,
would not exclusively contain words, but also short keyphrases,
such as “travel to”. The reason for this choice was that it would be
almost impossible to compile a list of every possible associated
identifier for every category. Therefore by including keyphrases,
we could infer that an unknown word which would follow these,
might actually be a good identifier candidate. For example, “trip
to Garnethill1” is a sentence where a human can immediately
identify Garnethill as the name of a place, even though they might
never have heard of it. It is also very unlikely that the name of
Garnethill would come up in any general placename list. It was
desired that same functionality for inferred knowledge should be
implemented for the system as well.
It might be argued that using pre-compiled lists and rules as a
basis might not be an optimal solution. However, the process of
recognising keywords and inferring their meaning based on pre-
compiled rules and lists is well-established practice in the field of
Information Extraction. This practice is one of the two approaches
generally available for solving the problem of machine text
analysis and understanding, the other one being automatically
trained systems that do not rely on hand-crafted rules and
databases. Given the recommendations of Appelt and Israel [23]
on the choice of approach and based on the good availability of
resource lists (e.g. name and place lists) and the lack of extensive
training data (calendar entries), the manual approach was elected.
Further detail on the automatic categorization of calendar entries
the performance of our algorithm are described in [31].

5.3 Formulating queries based on keywords
With the appropriate keywords identified by the Keyword
Generator module, the next step the system should take is to
generate appropriate queries for these keywords. Sometimes a
keyword on its own might be a good candidate for a query.
However, in order to obtain information that is closer to the needs
or preferences of the user, the keyword will have to be combined
with other keywords to form longer queries. Those additional
keywords can be obtained from the calendar entry itself, or could
be retrieved from a separate database of additional keywords
which are known to be typically included in queries that are based
around the original keyword.
To be able to adapt the system to the user’s preferences and
needs, it becomes apparent that all additional keywords will need
to be weighted in order of importance to the user. Because some
of the additional keywords that will initially be provided might be
irrelevant to the user’s context, the system should be able to either
negatively weigh these, or increase the weight of additional
keywords for which the user was presented queries that retrieved

1 Garnethill, a region in the Glasgow City Centre area (UK).

“good” documents, while leaving other weights intact. A
combination of positive and negative weighting can also be used.
One approach to the problem of constructing an additional
keyword database would be to create a list of potential
associations for each keyword contained in the identifier database.
In this manner, the level of relevance between identifiers and
additional keywords would be high, although this would come at
a considerable cost. The costs of this approach would firstly be
the large degree of duplication of data, as an additional keyword
might be relevant to a multitude of identifiers. Secondly the
construction of appropriate additional keyword lists for every
single keyword would have to be done manually and there is no
guarantee that every single identifier would have an additional
keyword to reflect all context scenarios. Finally, because of the
specificity of the additional keyword associations, a sudden or
temporary change of context for the user might be completely
ignored or take a long time to adapt to, which is of course
undesirable.
An alternative approach would be to cluster the additional
keywords into smaller databases, which will reflect the
association of each keyword category, rather than each keyword
individually, with additional keywords. The term of clustering is
borrowed from the Information Retrieval field, where it is defined
as follows:

'…We define the organisation as the grouping
together of items (e.g. documents, representations of
documents) which are then handled as a unit and lose, to
that extent, their individual identities. In other words,
classification of a document into a classification slot, to
all intents and purposes identifies the document with that
slot. Thereafter, it and other documents in the slot are
treated as identical until they are examined individually. It
would appear, therefore, that documents are grouped
because they are in some sense related to each other; but
more basically, they are grouped because they are likely
to be wanted together, and logical relationship is the
means of measuring this likelihood…'2

This is a more natural step to take, considering that calendar
entries are already clustered into categories by nature. Therefore
web queries will be made by combining the original keyword
(category identifier) with either all or the top n additional
keywords that are associated with the category. In fact, as the
system becomes increasingly accustomed to the preferences the
user, the user-defined n-sized window of additional keywords
ranks should reflect the true preferences of the user by returning a
smaller amount of keywords within the same window.
The additional keywords can initially be set to have the same
score, which would indicate an equal opportunity for each
additional keyword to rise up in the ranks and therefore reflect a
user’s preference, independently of that preference’s
commonality. Alternatively, additional keywords can all be given
different initial scores which would reflect the general preferences
and assumptions that could be made for an average user. This

2 HAYES, R.M., 'Mathematical models in information retrieval',

in Natural Language and the Computer (Edited by P.L. Garvin),
McGraw-Hill, New York, 287 (1963).

would impede the training process for users that have very
particular requirements, although for the majority of the users this
method should provide adequately promising performance even
from the early phases of use. We employed the second option in
our implementation.
In order to obtain additional keywords for each category, three
different methods were used in conjunction:

• Interviews where people were asked to give details of
typical searches they might have performed for calendar
entries of each category (during the calendar entry
sample collection)

• Calendar entry samples were given to independent
subjects who were asked to produce as many web
queries as they could for each entry sample

• Google’s keyword suggestion tool3, where category
identifiers were entered and a list of potential associated
keywords was returned.

In our implementation, the keyword analyser module forms the
following two types of web queries:

• Original keyword (or keywords, e.g. name+surname)
only

• Original keyword + additional keyword

The system can currently be set-up to fetch the top N rated
queries for each user, according to their rank value, although for
the main experiment, the amount of generated queries was limited
to the top 5 rated items. When two or more queries happen to be
ranked equally, they are both included in the generated query list.

5.4 Pre-caching documents
Having described the methodology for formulating queries, the
next logical step in the sequence of operation events for the
system is to submit these queries into one or more search engines
on the Internet, which in turn should be able to retrieve links to
relevant documents.
Those links should be followed in order to retrieve the documents.
From within the documents, further links can be followed to
documents within the same web site, or to documents that are
external to the site. If those external documents were fetched and
analysed, the system would encounter yet more links, which
could also be retrieved. The retrieval process might be likened to
a multi-tier tree, where a document from the original query can be
considered a root, further linked from it are second-level nodes
and links to further documents from these form edges that lead to
even lower-level layers of nodes.

3 Google Adwords keyword suggestion tool:
 https://adwords.google.com/select/main?cmd=KeywordSandbox

Figure 2: The multi-tier retrieval tree

It becomes apparent that the system could be locked into a
fetching mode, which will exponentially increase the number of
documents retrieved, without guarantees that all of the lower-level
nodes will be relevant to the original query. In fact, it is logical to
expect that the degree of relevance will reduce with the increase
of the depth of the retrieval tree. Considering Jansen’s [24]
observation that only 50% of the original web documents
retrieved from web queries are classed as “interesting” by users,
the lack of any guarantee of relativity of all the supplementary
retrieved documents is apparent. For this reason a control
mechanism should exist, which will either limit the amount of
levels the retrieval tree can have, or be able to intelligently predict
whether a linked document might be worth pre-fetching. Based on
the pre-fetching methods researched earlier for desktop computers
and proxy caches, it becomes obvious that such decisions have to
be based either on data from server request statistics or an
analysis of the target document, in which case it needs to be
fetched so it can be analysed. Such an implementation technique
as the latter might be considered an interesting exploration for the
adjustment of performance levels, however it is beyond the scope
of this investigation. Therefore a logical solution for this problem
under these circumstances would be to implement a mechanism
that would limit the depth of the retrieval tree levels for each
document.
Further considerations would have to include the type of Internet
content that the system should be able to store. Further from
HTML documents which contain formatted text, other elements
such as images, .pdf or .doc files, audio and video, might be
desirable to have. All of these however place a considerable
stretch of the memory limitations of current handheld devices. For
this purpose, we carried out interviews with users in order to
discover exactly what kind of content should be prioritised for
pre-fetching. The results of the interviews showed an
overwhelming preference to text (HTML, Word, PDF), while
other media such as images, audio and video were considered
largely irrelevant, unless a user was specifically looking for such
types.
Of the search engines available today on the Internet, the most
successful is the Google engine4. This engine was chosen for the
submission of the formulated web queries. An observation by

4 http://www.google.com

Jansen and Spink [25] indicated that the majority of users (80%)
only view between ten and twenty results for each query, i.e. no
more than one or two pages of results. Because the Google search
engine can retrieve thousands of relevant results, a choice was
made to limit the returned results to the top ten, as ranked by
Google. It was felt that the choice to restrict the results to the top
ten was justified, bearing in mind the memory constraints that are
present on handheld devices. Furthermore, because Google is
widely considered to be the best Internet search engine currently
available, the choice was made not to submit the queries to other
search engines. The comparison between the performance of
Google and other search engines was not of interest for the
purposes of this research and beyond this, such an attempt would
greatly increase the amount of retrieved documents without any
expected significant increase in the amount of retrieved relevant
documents. This would place a significant and unnecessary
burden on the subjects of the main experiment. Although
collective filtering could be applied to perhaps include only the
top K results from a number of search engines, it should be kept
in mind that the optimisation of the cache, while desirable, was
beyond the purposes of this research. Thus no services other than
Google were employed in this instance.
The Google result page is trimmed from all unnecessary HTML
elements in order to remove graphics, advertisement and
unnecessary links. Subdirectories are created to store all the
documents of the desired tree depth levels. The retrieval
procedure then works for each document of each tree level,
including the Google result page, in the following manner: Firstly,
the document is parsed and searched for links. Once a link is
encountered, the linked document is retrieved and stored in the
appropriate subdirectory. The link in the document under analysis
is changed to reflect the local relative URL of the newly-fetched
document. The process continues until no further links can be
found in the document, in which case, the system moves on to the
next document of the same depth level. In this manner, one can
envisage a horizontal breadth-first traversal of the document
traversal tree, in order to generate the lower levels of pre-fetched
document. The entire process ends when the user-specified
retrieval depth has been reached.
Once the system is finished retrieving the top ten documents for
each Google page, further transformation of the Google page is
made. A second-level parsing is performed in order to separate
the document titles, summaries and URLs contained therein, and
store them in an XML structure. This XML structure will later be
passed to the handheld device, along with the relevant documents,
and will be used to display the retrieval results to the user.

5.5 Mobile Component
5.5.1 Presenting Results
Once the documents have been retrieved and sent to the handheld
device, a separate software component therein should be
responsible firstly for displaying the documents to the user, and
secondly for observing the interactions of the user with these
documents.
It is clear that for the first task, the design needs to consider the
physical characteristics of the handheld device and especially the
constraints placed by the dimensions of the device screen. Taking
in mind Nielsen’s observations that users tend to dislike long
pages which require lots of scrolling [26], an implementation of

the results browser should be considerate of this natural tendency
and contain facilities that will allow the users to minimise the
scrolling needed. A collapsible tree-structured list of calendar
entries, identified keywords, searches and retrieved document
titles/summaries is potentially a good way of addressing the
scrolling problem. Unfortunately, due to the nature of web pages,
scrolling to view their content is inevitable. However the quality
of the browsing is beyond the system’s control and will be fully
dependent on the device’s integrated web browser. As this issue is
beyond the scope of this research, no attempt to write a dedicated
web browser was made.

5.5.2 Processing relevance feedback
Observing the interactions of the users poses several questions
that need to be answered. Firstly, which actions of a user do
reflect interest and therefore should be monitored? Secondly,
once such actions are identified, do they all indicate the same
amounts of interest or should their importance be weighted with
different measures? Based on previous related research, an
instinctive negative answer to the last question is probably the
right one. Indeed, as mentioned previously in chapter 2, it has
been shown that not all kinds of interaction can provide
dependable implicit information on relevance.
On the handheld device, a log is kept of the user interactions with
the content. Based on this information, an attempt should be made
to judge the relevance of a given keyword from the knowledge
base to the user’s context and determine which of these are likely
to be wanted as part of a query in the future. Given the collapsible
presentation structure, a log can be kept for:

• The viewing of the document index for a given search

• The viewing of the summary of a given document

• The viewing of the document

• The amount of time spent on a document that has been
opened

• Any explicit feedback rating that a user might provide

for the document.

The incorporation of further heuristics, such as pointer movement,
highlighting of text, bookmarking and scrolling in the document,
would also be desirable. However, given the implementation was
on a PocketPC platform, programming Pocket Internet Explorer
to trap such behaviours was not feasible. In addition, some of
these heuristics (e.g. scrolling) would not be reliably applicable,
given the lack of previous research on small screen devices for
such measures.
Upon loading, the handheld component examines the XML
structure passed to it and the XML-formatted Google pages, in
order to load the necessary details for presentation to the user.
The pre-fetching activity details are presented using a collapsible
tree structure list, which gives details of the appointments,
keywords identified, web queries formed and document titles of
each search (see figure 3).
When a document title is highlighted, the user is given the option
via two buttons to either launch a descriptive summary of the

document, or open the document with Pocket Internet Explorer.
The system monitors the collapse of the document list for a web
query, the viewing of a summary, the launch of Pocket Internet
Explorer and the duration for which it is active, i.e. in the
foreground. It is assumed that the user will be reading the
document for that time. Also, when Pocket Internet Explorer exits
and the user returns to the handheld software that is running in the
background, an option is given to explicitly rate the quality of the
document just read on a scale of 1-5 (figure 4).

Screen 1: Calendar entry list

Screen 2: Calendar entry
details

Screen 3: Queries formed for a
keyword

Screen 4: Document list for a
query

Figure 3: The mobile User Interface, showing the collapsible
tree list. Each keyword under a given calendar entry (title),
can be expanded to show the queries formed for it. For each

query, a list of retrieved documents is provided.
To implement the document summary function, the short
document narrative that Google provides directly under the
document title in its results page is used. This is displayed as a
pop-up dialog box to the user, upon request, therefore imposing
an interaction cost on its viewing (figure 4).

Figure 4: The auto-summary function and the explicit

relevance feedback screens.

5.6 Processing relevance feedback
For the heuristics mentioned above, we had to devise appropriate
weights and a method to combine their values to form a score for
each keyword. We define the importance I(k) of a keyword k to be

∑+=)()()(iEk DwI
k

where w is the weight associated with a viewed document index
for the keyword E(k) ∈ {0,1}, and D(i) is the importance of each
document i that has been retrieved for keyword k. Further more,
we defined D(i) as follows:

)()()()()(iiiii TFSOD εγβα +++=

where O(i) indicates the viewing of document i, S(i) indicates the
viewing of its summary, F(i) is the explicit feedback given by a
user to the document , T(i) is the time spent reading the document
and α, β, γ, ε are the respective weights for each of these
measures.

The weights w, α, β, γ and ε take positive or negative values. We
wanted a mechanism that would promote the appearance of
preferred keywords in the queries. However, the negative marking
for undesirable keywords would not only allow the improved
promotion of desirable keywords, but also, should one of the
latter become undesirable, due to perhaps the change of context of
the user, it would not take too long for it to start disappearing
from the queries.
We experimented with several weights for our system and we
arrived to the conclusion that it is not only important to consider
the relationship between the weights, but also the bias towards
positive or negative marking. Current research [8] shows that
users will view only two or three (on average) documents per web
query and the vast majority will visit at most 2 pages or results
(approximately 20 results in all). The same research shows that an
estimate of 50% of documents viewed from these results are
expected to be relevant to the query. Therefore we decided that a
bias of approximately 1:7 in favor of positive marking was
reasonable. Because our queries will not generate more than 10
documents each, this means that two documents with a positive

overall rating will indicate a successful and relevant query was
made. The weights that were used were as shown in table 2.
There was some confusion as to the weights ε which should be
used for association with the reading time interest indicator. As
mentioned in chapter 2, previous research highlights a possible
correlation between average reading time and relevance of a
document. However, all previous research had been conducted on
desktop computers, where screen readability issues were not as
much of problem. The initial inclination was to apply a tiered
weighting system according to the reading time averages reported
by Claypool [27]. The weights for each metric were chosen on an
ad-hoc basis, mainly through consultation with the main
experiment’s control group subjects and their observed
interactions with the system. From the figure below, it becomes
immediately obvious that there is quite some overlap between the
distributions of reading times for each explicit rating, something
which makes it difficult to accurately infer document relevance
from reading time alone, in most cases. After experimentation,
(described in section 5), it was decided also that these average
reading times were completely irrelevant to the handheld device
environment. In fact, it was discovered that no distinct correlation
could be made between reading time and document relevance on
a handheld device, so the decision was made to abandon this
metric completely.

Weight Value

α -0.03 (document not opened)
+0.03*7 (document opened)

β -0.021 (summary not viewed)
+0.021 (summary viewed)

γ -0.15 (feedback=1)
-0.075 (feedback=2)
0.00 (feedback=3)
+0.15*6 (feedback=4)
+0.15*7 (feedback=5)

ε Inconclusive

Table 2: Keyword score adjustment weights as used in the
system implementation

5.7 Limitations of the system
We would have liked to be able to incorporate further heuristics,
such as pointer movement, highlighting of text, bookmarking and
scrolling in the document. However, given the implementation
was on a pocketPC platform, programming pocket Internet
Explorer to trap such behaviors was not feasible. In addition,
some of these heuristics (e.g. scrolling) would not be reliably
applicable, given the lack of previous research on small screen
devices for such measures. Indeed, further on, we describe how
we were forced to also exclude reading time from our heuristics.
Further more, we decided not to pre-cache images or other media
(pdf, word), purely for reasons of storage space constraints.

Figure 5: Claypool’s findings on relevance and reading time

correlation

6. EXPERIMENTATION
6.1 Experiment design
Having implemented a full system, as detailed in the previous
section, it was time to test its performance and determine whether
the hypotheses proposed by this thesis could actually be met.
Ideally the system should be given to several users and they
should be allowed to run it for a period of time which should be
as long as possible. However, given the lack of volunteers that
would be willing to run the experiment as part of their everyday
routines and also given disproportionately large timescale the
experiment would take, a decision was made to test the final
system under supervised conditions which would simulate real
world scenarios as closely as possible.
Two groups of users were given the same scenario with some
details of their imaginary living location, job and a list of some
names of people and how they would be related to them.
Furthermore, over the duration of three weeks, the users would be
given five tasks per week that form their hypothetical schedule of
activities for that week. These activities were given in the form of
a calendar entry that contained a title, location and notes for each
one. Some activities did not contain items in the location or notes
fields, as they were based on real-world entries that we had
collected in previous studies. The users were also given clear
instructions on the exact meaning of each entry, through the
provision of accurate descriptions of the entries (see appendix 6).
The users were then allowed to freely navigate through the pre-
cached content that was fetched for these hypothetical schedules,
and try to locate content that they thought might be helpful to
them. We would also ask the users to give an indication of
whether they found the provided content for each activity useful.
It was decided that the users should not be told that their
behaviours would be logged. Also, one of the groups would have
their logs analyzed and we would attempt to provide them with
content that was personalized on the basis of these logs. Again,
the groups would not be made aware of this discrepancy until
after the experiment had ended. The analysis of the logs was done
automatically by the system, as described in section 3.9, for each

of the monitored subjects individually. Their respective profiles
were maintained and updated at the end of each session, therefore
influencing the retrieval process to personally match each of the
monitored group’s subjects.
Finally, another factor which was considered in the experiment,
was that the physical storage limitations for the devices used led
to a choice to pre-cache only HTML documents, and furthermore,
these were restricted to the documents proposed by Google for
each search. Effectively this meant that the retrieval tree was
limited to just one level. For a first-level document that contains
three hyperlinks, a two-order retrieval means a total of three
documents retrieved. The amount of generated documents from
just the one-level tree (table 16) was very large and this would
only grow further with the implementation of additional levels.
Therefore, in order to avoid overloading the user with documents
and to overcome storage limitation problems, the choice was
made to restrict the retrieval tree to just one level. Further to this,
the focus was placed on the four most popular categories,
according to the findings of the query test. Therefore the calendar
sets given contained only entries of type Meeting, Travel and
Social (including Birthday)

6.2 Initial experiment setup
An initial group of ten subjects volunteered to test the system
before we proceeded with the actual experiment. All of the
subjects were from a similar background and considered
themselves computer literate, although most did not have previous
experience with a PDA. The initial group was given different, but
similar in context, data than those that would participate in the
actual experiment; however, the rules of the experiment were the
same, apart from the duration of the experiment, which would
only encompass the virtual timeframe of one week. The goal of
this initial experiment was to ensure the system ran smoothly with
users that were unfamiliar with it. A further, and more important
goal, was to observe the average reading times for the web
documents and their relation to explicit feedback, as we planned
to use this metric for implicit relevance feedback.
Having analysed the results of these initial groups, it was
observed that the average reading times were not what we
expected, and were certainly in contrast with previous research
such as that mentioned in Section 4.

Initial group average reading times vs. feedback

17208,33

27560,00

34114,29

17627,45
20340,43

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5

Feedback

Av
. r

ea
di

ng
 ti

m
e

Figure 6: Initial group average reading times vs. feedback

ratings

It is clear from this graph that the users take, on average, the same
amount of time to distinguish between either relevant or largely
irrelevant documents. Therefore it is apparent that the use of time
as a metric is not a reliable source of information, since there is
not much significant discrepancy between the average reading
times for each feedback score. This observation brought about the
decision to eliminate this metric from the weight recalculation
formula, as it is in contrast with other findings, such as those by
Morita [28] and Claypool [27], but seem to confirm Kelly’s [29]
conclusion that reading time is an unreliable source for implicit
relevance feedback. While our research and that of Claypool’s use
scales of 1-5, Kelly uses a scale of 1-7. However what is more
interesting than the direct comparison of observations is the
fluctuation between these.

Average Reading time vs. Document Rating

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7

M
ill

is
ec

on
ds Komninos

Claypool
Kelly

Table 3: Studies on average document reading times (msec)

vs. perceived document usefulness

6.3 Actual experiment
For our actual experiment, two groups of ten people each were
used. The rules were applied in full this time and we were able to
obtain some interesting results at the end of the experiment.
Unfortunately, due to data corruption on the logs of two members
of one group, we were forced to exclude them from the analysis,
removing also two random members from the other group, to
make the figures directly comparable.
In the following graphs (fig. 7), a representation of the average
reading times for both groups, over the three experiment weeks is
depicted.
The trend shown here is slightly different from the results of the
initial group. This is expected as the data for the two groups were
not the same. However, again from this graph one can clearly see
that determining a relationship between feedback and reading
time is not feasible. The average reading times for the top two and
the worst mark are very close, making any secure distinction
between the two almost impossible. Further to this, it is surprising
that the group behaviour for all three weeks shows similar trends.
This finding seems to confirm our suspicion that average reading
times are strongly dependent on each individual test group
characteristics and cannot thus be easily generalized.

Average document reading times vs explicit rating

0

5000

10000

15000

20000

25000

1 2 3 4 5

Explicit rating

R
ea

di
ng

 ti
m

e

Week 1
Week 2
Week 3

Figure 7: Experiment group average reading times vs.

feedback ratings

Further analysis of the results should show whether there is a
trend in the improvement of cache hits for the group whose data
was tuned according to their previous logs. The following two
tables show the numerical and percentile quantities of the opened
documents (cache hits) vs. the total documents offered.

 Group 1 Group 2 Joint
Week 1 8,6% 24,4% 16.5%
Week 2 16.5% 18% 17.7%
Week 3 24.8% 30.5% 27.8%

Table 4: Total documents vs. Opened documents (percentage)

Group1 Group2 Joint

Total Opened Total Opened Total Opened

Week
1

1464 127 1464 357 2928 484

Week
2

1879 31 1880 357 3759 667

Week
3

1065 264 1248 381 2313 645

Table 5: Total documents vs. Opened documents (absolute
values)

From table 4 above, one can clearly see an almost linear trend
developing for group 1, who were the group that had their data
adjusted according to their logs. This is a strong indication that
for these users, the system provides an improvement in potential
efficiency, if one considers that opening a document indicates the
user’s potential interest in it. For group 2, a solid conclusion
cannot be made, as the percentage rates seem to fluctuate almost
randomly, affecting of course the joint outcome as well. It would

appear that for this group, the nature of the entries in their given
schedules is the only determinant in the percentage of documents
opened. For group 1 however, it appears that the application of
interest indicators found in previous logs, has a restraining effect
to the fluctuation of the variation in percentages and an overall
effect that shows increased performance of the system.
As mentioned in section 4, a further indicator of interest in a
document is its summary. A look at how many documents were
judged by the summary reveals the following results:

Group1 Group2

Immediate

Open

After

summary

Immediate

Open

After
summary

Week 1 90 (65.6%) 37 (34.4%) 255 (71.4%) 102 (28.6%)

Week 2 282 (90.9%) 28 (9.1%) 252 (70.6%) 105 (29.4%)

Week 3 209 (79.1%) 55 (20.9%) 205 (53.8%) 86 (46.2%)

Joint

 Immediate Open After summary

Week 1 345 (71.3%) 139 (28.7%)

Week 2 534 (80%) 133 (20%)

Week 3 504 (78.1%) 141 (21.9%)

Table 6: Summary viewing as a deciding factor for opening a
document.

The percentages compare each figure with the total number of
opened documents. From these trends we see that approximately
only 1 in 4 times did the users consult the summary before
making a decision. This suggests that a user will be inclined to
navigate to a website based on the information contained in its
title solely. A higher percentage was expected in this situation,
especially since visiting a document is costly (in terms of loading
and reading time) and also because in the implementation, explicit
feedback was requested after each user had finished reading.
According to Nielsen [26] also, users tend to like summaries and
will read them before resuming with the rest of the text. However,
it must be noted here that the summaries were only displayed on
demand, while the document titles were immediately available.
This was a necessary tradeoff in order to reduce the scrolling
required for the retrieval results overview, although the action of
opening a summary incurs an additional cost to the subjects.
Finally, the following table takes a look at the average document
scores for each session:

 Group 1 Group 2 Joint
Week 1 2.26 2.37 2.44
Week 2 2.60 2.38 2.48
Week 3 2.49 2.36 2.42

Table 7: Average document scores (0-lowest, 5-maximum)

It would appear from this table that the scores remain at a
constant level and in fact, at around the middle of the scoring

table. This in turn is consistent with the results by Jansen
[Jans03], where it is mentioned that users should expect 1 of 2
web documents they view to be relevant.
The choice was made not to measure the individual scores
attained by each group in order to establish a trend. These would
be actually just measuring the ability of Google to return relevant
results, where as this research is only concerned with measuring
the relevance of the web query in the context of the calendar entry
and the user’s needs.

6.4 Further discussion
6.4.1 Experimental environment
The experiment was performed in a quiet room. This setting
might not appear to be realistic in the sense that there were no
external distractions for the subjects, although they were given
food and drink and were allowed to communicate and interact
with each other. Mobile devices are used in both mobile and
stationary environments and since the experiment shows that
reading times are not long (around 25 seconds), it is expected that
a mobile user could easily dedicate such small times to interact
undisturbed. I perceive the notion of “mobile” to mean “out of
office” rather than “walking” or “driving”, therefore the setting
seems adequate for the purposes of the experiment. In any case, a
maximum time limit of 2 minutes, based on the observations from
an initial test group, is imposed on the measuring to eliminate
gross inaccuracies due to user distraction. Therefore it can be
concluded that the environment settings for the experiment were
appropriate for its purposes and did not deduct from its
credibility.

6.4.2 Statistical Confidence
Further to the results of the test, a two-paired T-Test was
conducted in order to investigate the statistical significance of the
findings that were observed, in relation to the improvement of
cache hit-rate improvement for the two groups. The t-test was the
recommended approach as the experiment dealt with two groups
of different subjects, who came however from a homogenous
background, for one of which an external factor was applied and
its effect was observed. This external factor was the monitoring
and consideration of interaction and feedback behaviour, and its
implication in the retrieval process.
The cache hit rates between week 1 and week 3 were measured
for each individual subjects and their difference was analysed.
The findings of the t-test are summarised in table 8 below. With a
statistical probability of error of approximately 1.2% when
considering whether the external factor was indeed responsible for
the cache hit-rate improvement, the credibility of the results is
further enhanced.

Meana—
Meanb t df
0.1003 2.4985 14
P
one-tailed 0.01277
two-tailed 0.02554

Table 8: T-test results

6.5 Summary of Findings
Several important conclusions were reached by this experiment.
Firstly, the system shows that useful Internet content can indeed
be pre-cached based on calendar information alone. This is shown
by the cache hit rates, which rose close to 30%. Another
important finding was that the reading behaviour of the subjects
when faced with documents on a small screen, showed that the
time spent on a document does not accurately reflect the quality
of the document. A correlation between these two cannot be
established, therefore the use of reading time for implicit
relevance feedback on small screen devices is not recommended.
Finally, and perhaps most importantly, the results of this
experiment show a gradual, almost linear improvement of the
retrieval performance for the group whose behaviours were taken
into account. Although the duration of the experiment could have
been longer, the statistical confidence is such that it can be argued
that the results are solid enough to provide adequate confirmation
of a promising learning curve performance.

7. Discussion and future work
We described a pre-caching system which is based on the
information found in electronic calendars, in order to provide
useful content for a user with a small mobile computing device.
While such a system in its own right would not be able to
completely satisfy all of a user’s internet content needs or desires,
we show that this system it can indeed provide useful content for
the appropriate entry categories. Even in the case of entries where
the information contained therein comprises of a single word, the
automatic generation of web queries based on common
knowledge and the users’s preferences proves to be able to
provide meaningful and useful content.
While in this instance we chose to focus on the contextual
information that could be obtained from electronic calendars, it is
possible to foresee an expansion of the system which may make
use of additional sources of information. Some examples could be
the scanning of a user’s email inbox, SMS inbox or Instant
Messaging backlogs for information on upcoming activities. It is
common these days that meetings are arranged through email and
tasks are also delegated through this medium. Thorough analysis
of email messages would require a careful natural language
processing, we believe that such a process would be a very
valuable source of information.
Given the opened document trends as described previously, we
have reason to believe that our system is able to adapt accordingly
to the individual preferences of a user. A further trial over an
extended period of time, preferrably over 6 months, would be able
to show the fluctuation between improvement rates and whether a
peak is reached, which would indicate the system’s optimum
performance level. A foreseeable problem with our current system
is that the current adaptation algorithm adjusts the system
gradually, and not abruptly, to the needs of a user. Thus, if a
dramatic change of circumstances was to occur, or if a user was to
require information from a very specific and known source, it is
likely the system would fail to provide the necessary information.
To that extent we programmed the system so that if a calendar
entry contained a website address in the Notes section, that URL
would automatically be pre-cached. However, our interest
focussed on the adaptability algorithm and the usefulness of

calendar entries as a source of contextual information, thus our
experiment did not include the usage of this convenience.
Further to this, the system currently lacks the ability to
automatically add keywords to its knowledge base. Such an
inclusion, we believe, would help dramatically in the
improvement of the system’s performance.
Apart from the findings that were part of our main target, we
encountered several other interesting facts. The similarity
between decision times for judging positively or extremely
negatively against a document prohibits the use of such a metric
from any further studies. Further to this, we were also impressed
by the low reading times, which are in stark contrast with other
studies that are concerned with the average reading time of a web
document, such as [28], [27]. Other studies report average reading
times closer to the ones we experiences, but again higher
[29],[30], although these were not based on web documents.
However, all of these previous studies relate to documents viewed
on a desktop, where a large monitor facilitates the viewing of
documents. It is our assumption that the smaller reading times on
the handheld indicate a tendency for users to “skim” through the
document in order to decide on its usefulness. This should be
considered normal, given that the need for immediate and full
comprehension of the information in the text was not there (due to
the virtual environment). Therefore the users would try to acquire
a general “feel” for the quality of the searches, and refer to these
later on when they have more time or immediately need the
information. Nielsen argues that scanning the text in a web
document is common practice. Further more, in his work, long
pages that cause lots of scrolling are considered to be largely
disliked by users. Since the limited size display on a handheld
causes websites to appear unproportionately large and causes lots
of scrolling, our findings of reduced reading times seem to be
further supported by these statements.
The reduction of used bandwidth was a starting point in our
thinking; however, starting from thinking about how we could
reduce the need for mobile bandwidth, we became interested in
examining calendars as a source of contextual information. The
significance of the findings of this study do not relate solely to
how bandwidth can be reduced. Rather, with the discovery of
patterns in electronic calendar use and the automatic de-ciphering
of calendar entries, one could proceed in solving other problems
in the usability of mobile devices, or invent new services.
(Yet) unpublished work that we have carried out draws upon the
categorization of entries to improve the usability of calendars,
firstly by implementing entry categories that reflect those truly
needed by users (most mobile devices offer a categorization
which is far too simplistic to address real user needs). Also, based
on the categorization, entries could be colorized to carry layers of
information such as type of entry (meeting, to-do, etc) and
distance of event from current location. This would enable a
mobile calendar to automatically adjust reminders, pre-fetch
traffic information or building service information (e.g. lift
status).
Our work shows that de-ciphering calendar entries and
automatically discovering which category they fall under can be
used successfully in pre-caching internet content. However, the
same technology can be used to solve other real needs in mobile
device interaction, such as augmenting the usability of mobile
calendars.

8. References
 [1] Balabanovic M., Shohav Y., Yun Y., An Adaptive Agent for

Automated Web Browsing, Journal of Visual Communication
and Image Representation vol. 6 n.4, 1995

[2] Wang Z., Crowcroft J., Prefetching in the World Wide Web,
Proceedings IEEE Global Internet Conference, London,1996

[3] Cunha C., Jaccoud C., International Symposium on Computers
and Communication 97, Alexandria, Egypt 1997

[4] Thiebaut D., On the Fractal dimension of computer programs
and its applications to the prediction of the cache miss ratio,
IEEE transactions on Computers, 38(7), pp. 1012-1026, 1989

[5] Palpanas T., Web Prefetching Using Partial Match Prediction,
Proceedings of the 4th International Web Caching Workshop,
San Diego, CA, 1998

[6] Jiang, Z. Kleinrock L., An Adaptive Network Prefetch
Scheme, IEEE Journal on Selected Areas in Communications,
Vol. 16, No. 3, pp. 358-368, 1-11, 1998.

[7] Jiang, Z., Kleinrock, L., Web prefetching in a mobile
environment, IEEE Personal Communications 5, pp. 25-34,
1998

[8] Chinen, K. Yamaguchi S., An Interactive Prefetching Proxy
Server for Improvement of WWW Latency. Proceedings of
INET97, June 1997.

[9] Duchamp D., Prefetching Hyperlinks, Proceedings of the 2nd
USENIX Symposium on Internet Technologies and Systems,
Boulder, CO, 1999.

[10] Fan L., Jacobson Q., Cao P., Lin W., Web prefetching
between low-bandwidth clients and proxies: Potential and
Performance, Proceedings of the Joint International
Conference on Measurement and Modelling of Computer
Systems (SIGMETRICS 99), Atlanta, Georgia, 1999

[11] Pitkow J., Pirolli P., Mining Longest Repeated Subsequences
to Predict WWW surfing, Proceedings of the Second USENIX
Symposium on Internet Technologies and Systems, October
1999.

[12] Schechter S., Krishnan M., Smith M. D., Using path profiles
to predict HTTP requests, Proceedings of the Seventh
International WWW Conference, Brisbane, Australia, pp. 457-
467, 1998

[13] Padmanabhan V., Mogul J. C., Using Predictive Prefetching
to improve WWW Latency, ACM SIGCOMM Computer
Communication Review, 26 (3), pp. 22-36, 1996

[14] Crow, D., Smith, B., DB_Habits, Comparing Minimal
Knowledge and Knowledge-Based Approaches to Pattern
Recognition in the Domain of User-Computer Interactions,
Neural Networks and Pattern Recognition in Human Computer
Interaction, pp. 39-63, NY, Ellis Horwood, 1992.

[15] Swaminathan, N., Raghavan, S. V., Intelligent pre-fetching
in WWW using client behaviour characterization. Proceedings
of the Eighth International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2000.

[16] Foygel, D., Strelow, D., Reducing Web Latency With
Hierarchical Cache-based Prefetching, Proceedings of the
International Workshop on Scalable Web Services (in
conjunction with ICPP0), Toronto, Canada, 2000

[17] Davison, B., Predicting Web Actions from HTML content,
Proceedings of the 13th ACM conference on Hypertext and
Hypermedia, College Park, MD, pp. 159-168, 2002

[18] Zhang, W., Lewanda, D. B., Janneck, C. D., Davison, B. D.,
Personalized Web Prefetching in Mozilla. Technical Report

LU-CSE-03-006, Dept. of Computer Science and Engineering,
Lehigh University, 2003

[19] Davison, B., Learning Web Request Patterns, in A.
Poulovassilis and M. Levene, editors, Web Dynamics:
Adapting to Change in Content, Size, Topology and Use,
Springer 2004

[20] Cohen, E., Kaplan, H., Pre-fetching the means for document
transfer: a new approach for reducing Web latency,
Proceedings of the 2000 IEEE INFOCOM conference, pp.
854-863, Tel-Aviv, 2000

[21] Komninos, A., Dunlop, M.D. (2003): Towards a model for
an Internet content pre-caching agent for small computing
devices, Proceedings of the 10th International conference on
Human Computer Interaction (HCII2003), Crete, Greece, 2003

[22] Kincaid, C. M., Dupont, P.D., Kaye A. R., Electronic
Calendars in the Office: An assessment of user needs and
current technology, ACM Transactions on Office Information
Systems 3(1), pp. 89-102, 1985

[23] Appelt, D., Israel, D.J., Introduction to Information
Extraction Technology, International Journal of
Communications in Artificial Iintelligence 12, pp. 161-172,
1999

[24] Jansen, B.J., Spink, A., Bateman, J., Sarasevic, T., Real Life
Information Retrieval: A Study of User Queries on the Web,
ACM SIGIR Forum 32(1), pp 5-17, 1998

[25] Jansen, B., Spink, A., An analysis of web documents
retrieved and viewed, Proceedings of the 4th International
Conference on Internet Computing, Las Vegas, Nevada, pp.
65-69, 2003

[26] Nielsen, J., Morkes, J., Conscise Scannable and Objective:
How to write for the web,
http://www.useit.com/papers/webwriting/writing.html, 1997,
Link valid Jan 2005

[27] Claypool M., Le, P.,Waseda, M., Brown, D., Implicit Interest
Indicators, Proceedings of the 6th International Conference on
Intelligent User Interfaces (IUI ’01), USA, pp. 33-40, 2001

[28] Morita, M., Shinoda, Y., Information Filtering Based on User
Behavior Analysis and Best Match Text Retrieval, Proceedings
of the 17th annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 272-
281, Ireland, 1994

[29] Kelly, D., Belkin, N., Reading Time, Scrolling and
Interaction: Exploring Implicit Sources of User Preferences for
Relevance Feedback, Proceedings of the 24th annual
international ACM conference on Research and Development
in Information Retrieval, New Orleans, pp. 408-409, 2001

[30] Kelly, J. D., Understanding Implicit Feedback and Document
Preference: A naturalistic user study, PhD Thesis, State
University of New Jersey, USA, 2004

[31] Komninos, A., Dunlop, M.D. (2004): Keyword Based
Categorisation of Calendar entries to support Personal Internet
Content Pre-caching on Mobile Devices, 2nd International
Workshop on Mobile and Ubiquitous Information Access
(MUIA04), in conjunction with Mobile HCI04, Glasgow,
Scotland, 2004

[32] Komninos, A., Dunlop, M.D. (2004): Calendar Based
Contextual Information as an Internet Content Pre-Caching
Tool, 2nd International Workshop on Information Retrieval In
Context (IRiX04), in conjunction with the 28th SIGIR
International Conference on Information Retrieval, Salvador,
Brazil, 2004

