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ABSTRACT 
We described in earlier publications the principles of a system 
where internet content would be pre-cached, based on contextual 
information obtained from a user’s electronic calendar. The model 
for such a system envisioned a set of cooperating agents, 
distributed on a user’s desktop and mobile device, which would 
be responsible for making decisions on the context and 
preferences of the user, and downloading the relevant internet 
content through a land-based broadband connection and storing it 
on the mobile device. This paper presents and discusses 
established pre-caching techniques and their suitability for use on 
mobile information access scenarios. It proceeds in describing the 
implementation details of an alternative approach, a calendar-
based pre-caching system and presents the findings of tests that 
were made with human subjects on such a system. 
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1. INTRODUCTION 
Motivated by the disparity of desktop and mobile Internet access, 
both in terms of available bandwidth and in terms of cost, this 
paper presents research into an alternative method of making 
Internet content available for mobile users. This method is based 
on the extraction of contextual information regarding the user’s 
activities and interests using their electronic calendar as a main 
source, and pre-loading their mobile device with Internet content, 
using a land-based connection. 
The main aim of the research presented in this paper is to 
investigate whether calendars can indeed provide information that 
can be used to pre-fetch useful Internet content for mobile users. 
While it is expected that such an approach cannot fulfil the 
entirety of Internet content needs for a user, the work presented 
here provides evidence to the extent to which a mobile cache can 
be populated with relevant documents that the user could find of 
interest. 
Further to this, this research is concerned with the potential of 
calendar entries to be used as sources for web query generation, 
independently of the entry brevity and without the direct 
involvement of the user. This is an essential step for the 
investigation of the aforementioned aims, given that an 
appropriately formulated web query would have a better chance 
of retrieving relevant documents and thus populate the mobile 
cache with more appropriate results. 

Finally, this paper shows that it is indeed possible for a predictive 
pre-caching system to efficiently adjust itself to the preferences 
and circumstances of the user as an individual, in order to obtain 
optimal retrieval performance. 
While not directly related to the main aims of this research, we 
report further results and findings which concern the usability and 
interaction patterns within electronic calendars, the document 
reading behaviour on mobile devices and the suitability of 
implicit interest indicators for information retrieval on mobile 
devices. 
 

2. MOTIVATION AND CURRENT PRE-
CACHING TECHNIQUES 
One of the basic issues in the problem of effectively pre-caching 
internet content needs, whether on a large scale, such as in servers 
or proxies, or on a personal level, is the determination of exactly 
which documents should be pre-cached. Taking this decision at a 
level that allows for maximum personalization, involves the 
observation of a user’s behaviors, in order to create suitable 
models that would encompass these behaviors and allow accurate 
predictions to be made.  
One of the earliest attempts at the automatic prediction and 
retrieval of internet content was described by Balabanovic et al. in 
1995 [1].  The system described there forms a model of each 
user’s preferences and continuously adapts itself to reflect the 
user’s opinions of the content that is prefetched. The user is 
presented with a collection of hyperlinks to documents that the 
system has identified as potentially interesting. There is an option 
for the user to explicitly rate each link (from +5 to -5), therefore 
providing the system with simple relevance feedback. Even 
though the scheme employed by the researchers is a relatively 
straightforward approach, they succeeded in proving that there are 
significant gains that can be made through the personal profiling 
of users. 
Wang and Crowcroft [2] discuss the some tradeoffs between pre-
fetching and the improvement of latency in the WWW. Also, they 
present an implementation of a deterministic pre-fetching 
approach, called Coolist. Their system is layered between the 
client and the proxy server and organises websites in folders. 
These folders can then be assigned three methods of pre-fetching. 
Batch pre-fetching is the first method, where a site is scheduled 
for downloading at a given date or time. Another method of pre-
fetching is described by the term “start-up” and means that a site 
will be pre-fetched when Coolist is invoked. Finally, their third 
proposed method is pipeline pre-fetching, where sites are grouped 
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for pre-fetching. When the first page in a group is requested, the 
next one will be automatically pre-fetched, regardless of the fact 
that a user may have not requested it.  
Another discussion of the advantages of pre-fetching was carried 
out by Cunha and Jaccud [3], who proposed two algorithms for 
the prediction of the user’s next action while browsing the web. 
Their first algorithm, using Random Walk approximation, 
projects the long-term interaction trend, while a second algorithm 
focuses on the short term trends. Using a model described by 
Thiebaut in 1989 [4], which relates the accumulated number of 
cache misses to a program’s random walk range, the researchers 
show that it can be successfully applied to characterise users’ 
strategies, under the hypothesis that these relate to an infinite 
browser’s cache. This model is mathematically described as 
follows: 
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In this equation, r is the number of references, N(r) is the 
accumulated number of misses, θ sets the curve growth pace, and 
A is a constant. A second method is described within the same 
report, which uses an algorithm of two phases: Firstly, a 
preparation phase computes the first order difference of the 
envelope of the user’s profile curve, displaced by a factor of 0.5 
(for ease of detecting behaviour changes). Secondly, the 
prediction phase determines how conservative the user was in the 
last t accesses. Also, a determination of how much history is 
made, based on that count, in order to compute the desired set of 
coefficients that minimise the short-time prediction error, around 
a vicinity of size n, for a sample at virtual time r. A routine, based 
on Durbin’s method to calculate the linear prediction coefficients 
is then called, and lastly, the predicted value is computed as a 
linear combination of the past NCOEF terms. The authors show 
that both user models manage to achieve a degree of accuracy 
around 85%, which can be applied in conjunction with pre-
fetching techniques. 
In his technical report, Palpanas [5], investigated the feasibility of 
using a model based on the partial-match prediction algorithm, for 
pre-fetching documents from the web. In his model, a pre-caching 
agent acts as an intermediary between the client and the server(s) 
that a user is connected to in a session. Having taken into 
consideration the special characteristics of the Web and after 
tailoring the algorithm to accommodate those, the author 
concludes that his proposed scheme’s implementation is feasible 
and that it would be assistive to users who “consistently follow 
regular access patterns, when searching for information”. This 
conclusion is reached through simulations, run on the access log 
files of the web server of the department of computer science, at 
the University of Toronto. 
Jiang and Kleinrock [Jian98a] presented in 1998 a system in 
which pre-fetching is decided by the client, based on usage 
statistics about embedded HREF tag attributes. In their work, the 
client monitors its available bandwidth continuously and pre-
fetches web content, choosing however not to pre-fetch images, in 
order to save bandwidth. An algorithm to decide which pages 
should be pre-fetched is used, based on the client’s access history 
combined with the server’s access histories for each file they 
hold. Further filtering on the decision process is placed by placing 
an upper bound on the pre-fetch threshold, which is a function of 

the system load, capacity and cost of a time unit and a system 
resource unit. This two-tier decision process allows the system to 
maximise the performance gaining that can be achieved through 
pre-fetching. 
Further application of Jiang and Kleinrock’s work is found in 
another paper that investigates pre-fetching for mobile users 
[Jian98b]. Interestingly, in this paper, the authors extend their 
prediction algorithm to achieve higher hits, by assigning users to a 
category (such as those interested in database research), amongst 
other things. The second component of their scheme is a server 
threshold model, which judges whether a page should be pre- 
fetched based on: 

• The amount of time that may be saved by pre-fetching a 

file that may be needed 

• The amount of bandwidth that will be wasted if the file 

is not used;  

• The impact of the pre-fetch request on other users 

whose normal requests may be delayed by the pre-fetch 

request.  

The latter is a necessary consideration in order to ensure that the 
overall system performance can be improved by pre-fetching the 
file. The authors proceed to conclude that their approach is well 
suited to mobile users, who may need to switch between different 
network connection methods (modem, broadband, satellite, 
wireless). This is because the separate server threshold module 
allows the adaptability of the prediction algorithm, ensuring the 
best possible performance under each network condition. 
A simpler implementation than the one by Ziang and Kleinrock 
was proposed with the WCOL system, by Chinen and Yamaguchi 
in 1997 [8]. Their system is a research prototype that pre-fetches 
embedded hyperlinks top-to-bottom without regard to likelihood 
of use. Embedded images of pre-fetched pages are also pre-
fetched. Bandwidth waste can be capped by configuring WCOL 
to pre-fetch no more than a certain number of hyperlinks, and no 
more than a certain number of images embedded within pre-
fetched hyperlinks. 
In 1999, Dan Duchamp [9] presented his own work on pre-
fetching hyperlinks, based on a predictive algorithm at a client 
level, which is however able to communicate usage statistics from 
the server. Because the client is unable to form an objective view 
of the usage for a given web page, unless that page is visited often 
by the user, it passes on to the server the current usage statistics it 
has obtained, but also demands the aggregated statistics for that 
page, as held by the server. The performance results obtained by 
an implementation of the aforementioned idea were strongly 
encouraging. For example, of all the pre-fetched pages, a figure of 
62.5% was eventually used. An improvement in latency of the 
order of 52.3% was observed, while notes for the consideration of 
network overhead due to the usage reports are being addressed. 
Further concerns regarding the size of the modifications necessary 
to the browser (Mozilla) and the execution time overhead due to 
these, are eased, since these do not appear to be significant. 



Continuing on the theme of document pre-fetching on a 
personalised level, more related work was carried out by Fan et al. 
[10] in 1999. They propose pre-fetching at a proxy level, under 
the argument that because proxies can collect access histories for 
limited numbers users, this would present significant advantages 
over server-level pre-caching, since servers would be able to only 
collect access histories for the entire WWW population. An 
investigation of prediction by partial match algorithms follows in 
their work, followed by a simulation which shows an 
improvement in latency between low-bandwidth clients and 
proxies, of the order of ~23% 
Pitkow and Pirolli [11] explore predictive modelling techniques 
that attempt to reduce model complexity while retaining 
predictive accuracy. The techniques merge two methods: a web-
mining method that extracts significant surfing patterns by the 
identification of longest repeating subsequences (LRS) and a 
pattern-matching method that embodies the principle of weighted 
specificity. Their work is largely motivated by previous studies by 
Schechter, Krishnan, and Smith [12], who utilized path and point 
profiles generated from the analysis of Web server logs to predict 
HTTP requests. Also, much reference is made to the work by 
Padmanabhan and Mogul [13], who describe the efficiency of 
Markov Models for pre-fetching. The authors use the definition of 
Longest Repeating Subsequence by Crow and Smith [14], which 
contains the following terms: 

• Subsequence means a set of consecutive items 

• Repeated means the item occurs more than some 

threshold T, where T typically equals 1 

• Longest means that although a subsequence may be part 

of another repeated subsequence, there is at least one 

occurrence of this subsequence where this is the longest 

repeating. 

Two models are proposed, firstly a hybrid LRS model which 
extracts LRS patterns from a training set and uses them to 
estimate a 1st order Markov Model.  This model is compared 
against a 1st order Markov model estimated from all the paths in 
the training data set. The second hybrid model proposed is one 
that decomposes the extracted LRS subsequences into all possible 
n-grams of various lengths. This is called the All Kth Order LRS 
model, as all orders of k are able to make predictions. This model 
is compared against an All-Kth-Order Markov model derived 
from all the possible subsequences, decomposed into varying 
length n-grams. Further simplification is added to their web 
surfing model, by assuming that surfing paths have an average 
branching factor b. Surfers may start in b places and from each 
page, they move on to one of b pages on average. By assuming 
that surfing paths of length S can be divided into S/k subpath 
partitions (0<k≤S), the complexity cost C(k), in terms of the 
number of patterns as a function of k can be described as  
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Through analysis of the applied methodology, the 
authors showed that in the case of modeling paths under the first 
hybrid model, the reduced LRS model was able to match the 
performance accuracy of the 1st order Markov model while 
reducing the complexity by nearly a third. They also then showed 
that overall hit rates could be raised by including the principle of 
specificity, with the All-Kth-Order LRS model almost equaling 
the performance of the All-Kth-order Markov model while 
reducing the complexity by over an order of magnitude. Finally, 
within their findings, it was further shown that increasing the 
prediction set has a dramatic impact on predictive power, with the 
predictive power of each method nearly doubling by increasing 
the set size to four elements. 

Swaminathan et al. presented in 2000 [15] a study of 
web pre-fetching which is based on the characterisation of the 
web client alone, without depending on server or proxy side 
algorithms.  

 
Figure 1: Operational principles diagram (Swaminathan et 

al.) 
 

The above figure shows the principle of the system as 
described by the authors. The input stream consists of symbols 
representing the URLs. The learning module learns the trend in 
visit counts associated with the past n URLs and the order of 
URLs visited and it is implemented using genetic algorithms. The 
comparison module compares the predicted and the actual streams 
and provides feed back of the error in prediction to the learning 
module. The generative module attempts to predict the next k 
URLs that might be visited for possible pre-fetching. Finally, the 
pre-fetching module decides which URLs to actually pre-fetch 
based on constrains such as available bandwidth, recommendation 
from the server and the state of the web client. In their research, 
the authors highlight the problem of dynamically generated 
Internet content, which renders pre-fetching approaches useless. 
Indeed, given the trend to deliver highly customisable content to 
users and the generic structure that is “populated” by dynamic 
articles, which now forms the basis of many major sites, the 
validity of the pre-fetched content becomes an important issue. 
An interesting point in this research was that the authors manage 
to prove, through simulation on actual client traces, that their 
proposed pre-fetching technique allows the maintance of client 



cache hit ratio of around 13% on average, even when all the 
visited URLS are dynamic. 
Interesting research on proxy cache was also presented by Foygel 
and Strelow in 2000 [16]. The authors propose a system of 
hierarchical proxy caches, where their algorithm observes 
requests to a cache and its ancestors, before initiating pre-fetching 
for the predicted future requests. This would only happen if the 
pre-fetching action is deemed likely to reduce the overall latency 
experienced by the cache’s clients. Their algorithm is based on 
the continuous evaluation of the usefulness of each document in 
the cache, but also of documents that are not in the cache, but are 
likely to be needed in future requests. The set of documents 
(fetched or un-fetched) which has the greatest esteemed value is 
kept in the caches. In their conclusions, the authors argue that a 
hierarchical cache network structure is the ideal foundation on 
which pre-fetching can yield significant performance gains. 
Again, however, they highlight the concern over increased 
network utilisation, although they argue that it is often the case 
that because traffic is added to under-utilised networks, the 
performance gains can be obtained without significant cost. 
Brian Davidson [17] presented an article in 2002, which relates to 
predicting web actions from HTML content. In his work, he 
compared the simplistic approaches so far taken for pre-fetching 
based on HTML content, with an information retrieval-based one 
that ranks the list of links using a measure of textual similarity to 
the set of pages recently accessed by the user. These simple 
approaches vary, but examples are namely pre-fetching all 
hyperlinks in a page, or pre-fetching all hyperlinks in a serial 
manner, as time allows.  
The algorithm used for measuring the similarity between two text 
documents (D1, D2) is 
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Having compared text-similarity-based ranking methods to simple 
original link ordering and a baseline random ordering, the author 
found that similarity-based rankings performed 29% better than 
random link selection for prediction, and 40% better than no pre-
fetching in a system with an infinite cache.  
The ideas of Davison are implemented in Mozilla, an open-source 
web browser and a technical report is made in 2003 by Zhang et 
al. [18], who incorporated the aforementioned content-based 
prediction algorithm with the history-based prediction described 
in another work by Davison [19]. 
Further related research, however not immediately a document 
pre-caching technique in its own right, was presented by Cohen 
and Kaplan [20] in 2000. Their proposal is that in order to 
overcome potential problems in the validity of cached documents, 
and other problems that relate to the increased network utilisation, 
which in turn might cause clients to experience even more 
latency, one could pre-fetch (rather, pre-execute, one might add) 
the means of getting a document, rather than the document itself. 
This is because of the observation that the actual steps required 
for the setup of a connection, are relatively costly in terms of 
time. A suggestion is made that this pre-transfer prefetching 
could be accomplished by  

• Pre-resolving, which means that the browser or a proxy 
could perform a DNS lookup before a request to a 
server is issued, therefore eliminating the DNS query 
time from user-perceived latency 

• Pre-connecting, where the browser or a proxy 
establishes a TCP connection to a server, prior to a 
user’s request. This should address the problem of 
connection establishment time, which is significant 
compared to HTTP request response times. 

• Pre-warming, or, in other terms, sending a dummy 
HTTP HEAD request prior to the actual request, in 
order to address the problem of start-of-session latency 
at the server, which tends to be larger for first-time 
requests than follow-up requests (the server is referred 
to as being “cold” or “hot”, once a request has already 
been issued). 

The tests conducted in this research show a significant decrease in 
average latency times, proving that pre-fetching the means for 
getting a document is a useful technique that can be applied to the 
problem of reducing overall latency. 

3. LIMITATIONS OF CURRENT 
RESEARCH 
The techniques presented in these research papers describe the 
process of pre-caching documents in a dynamic manner, whilst 
however presuming that the user has a currently active connection 
and is using (surfing) the Internet. Although all of the concepts 
are largely relevant and indeed of great interest, they suffer from 
the disadvantage that network connectivity is a pre-requisite and 
is essential to their operation.  
In mobile devices such as PDAs and Smartphones, network 
connectivity is not a transparent service which is normally 
available under typical operating circumstances, such as on 
modern broadband-connected desktop computers. Indeed, 
network connectivity depends heavily on the location of the user 
and the strength of wireless network signals, the interference of 
nearby radio-wave emitting devices with network antennae, the 
subscription to co-operating networks, the present load of the 
wireless network and the type of wireless network connectivity 
supported by the mobile device hardware. All of these factors are 
commonly present in everyday situations and make the likelihood 
of network unavailability rather high.  
Further to this, most of the aforementioned pre-caching models 
make no, or very little, consideration of the bandwidth used to 
pre-fetch files which will never be used and assume a practically 
unrestricted local (or proxy) cache. With mobile devices, one has 
to consider that the available bandwidth is generally very limited, 
as well as extremely costly, as the charging mechanism is per unit 
of data (typically KB), rather than time, when using connections 
that provide acceptable surfing speeds (GPRS, 3G). Additionally, 
the devices themselves offer very little memory capacities, thus 
placing significant constraints on the size of caches that can be 
created for web surfing. It can therefore be generally concluded 
that current predictive pre-fetching models cannot be directly 
applied  



Given the high probability of network unavailability in the daily 
environment, internet content pre-caching seems a logical 
solution to partially solving the problem of mobile information 
access. However, pre-caching, as described in aforementioned 
research, is a technique that is largely inapplicable (or even 
unacceptable), due to the significant cost and the charging 
mechanism for accessing the Internet over a wireless connection. 
In fact, given the charging per Kilobyte that most service 
providers adopt for GPRS and 3G, it would seem obvious why a 
user might want to initiate data transfer from the Internet as only 
they deem necessary. Wi-Fi networks on the other hand are a lot 
less expensive but are very limited in range, thus preventing true 
mobility.  
Another type of solution to pre-caching Internet content is 
common to several types of mobile devices are not equipped with 
wireless connection (actually even to devices that have integrated 
wireless capabilities), but have software for browsing the web 
already installed. Users of devices such as the ones we described, 
tend to resort to commercial programs such as AvantGo, that 
provide a means of pre-caching selected or interesting pages 
based on declared user preferences and storing them for off-line 
browsing. However, such services offer static, rather than 
dynamic personalization, and depend heavily on explicit user 
instruction on the (limited) type of content that should be pre-
cached.  

4. A PREDICTIVE PRE-CACHING 
SYSTEM FOR MOBILE DEVICES 
Information access relates strongly to the individual user’s 
interests, which rise from general, always valid (permanent) 
preferences (e.g. aviation news will always interest an aviation 
enthusiast, regardless of their profession). Information access also 
is strongly dependent on preferences which can vary, according to 
the task the users are, or anticipate to be engaged in. While the 
knowledge of both contexts under which information access 
might be desirable are necessary for pre-caching useful 
information, in our research, we focus more on the automatic 
prediction and comprehension of the activities a user might be 
engaged in, in the near future.  
Thus we hypothesized that it would be possible for a personal pre-
caching algorithm to examine a user’s electronic calendar as a 
source of information that it could use, in order to make dynamic 
informed predictions about the user’s future tasks and provide 
useful content to the user. While it may be unrealistic to expect a 
calendar-based pre-fetching algorithm to describe all of the user’s 
preferences and content needs or desires in a perfect manner, we 
expect that content that is relevant to the user’s daily interests can 
be picked up. Further more, we were interested in investigating 
whether permanent user preferences can be captured in order to 
tailor the quantity and quality of the content better to suit the user. 
 

5. THE PRE-CACHING SYSTEM 
5.1 Overview  
To explain the principles of operation behind the system we 
propose, it might be useful to present an example scenario. Let us 
consider the following example: Each entry in the user’s calendar 
should contain at least one keyword, which will help us 
understand the nature of the activity denoted by the entry. If a 
calendar entry contains a keyword such as the name of a city (e.g. 

Edinburgh), of which the user is not a resident, it can be assumed 
that the user will be present at that location for some purpose 
which is possibly described elsewhere in the entry. Typical 
information about cities could then be downloaded through web 
searches such as “Edinburgh map”, “Edinburgh accommodation”, 
“Edinburgh Museums” etc. Also, further and more specialised 
searches, formed through combination with other information 
retrieved from the calendar entry, can be conducted, e.g. 
“Edinburgh Holiday Inn” or “Edinburgh HCII2004 conference”. 
The predictive system can then be enhanced over time through 
use of implicit or explicit feedback to learn and remember a users’ 
preference for different categories of information, e.g. more 
interested in transport links than hotels. Such a predictive system 
should be able to obtain information from the user directly and 
indirectly. The majority of information should be obtained 
through indirect means, in order to minimise interference with the 
user’s other activities. However, the system should maintain its 
ability to directly interact with the user, in order to resolve any 
possible uncertainties. 
In previous work [21], we described the overview principles for 
our pre-caching system, whose software comprises of two core 
modules, each of which encompasses a number of cooperating 
agents. The first module resides on a desktop computer and works 
in order to extract entries from the user’s electronic calendar. It 
then uses the desktop’s connection to pre-cache documents. The 
second module is responsible for presenting the pre-cached 
content on the user’s mobile device and therefore resides therein. 
The second module is also responsible for evaluating the user’s 
interactions with the pre-cached content and passes back this 
information to the desktop module, which then uses it to make 
more informed guesses at what it needs to pre-cache. 

 
Figure 1. Overview model of the system components 

5.2 Identifying keywords 
One of the most important problems that the system needs to 
solve is the identification of keywords within the calendar entries, 
which can be used to initiate the process of web query 
formulation. To achieve this, a database of known keywords 
(identifiers) could be kept, against which the system would 
compare the content of the calendar entries. 
In order to train the system with the ability to recognise potential 
keywords, it was decided that an analysis of the contents of a 
sample of real world calendars would be necessary. The scope of 
this analysis would be to determine firstly which suitable words 
and of what types, would be frequently encountered in a calendar. 



Subsequently, in order to confirm previous early research on 
calendars, an attempt would be made to identify calendar entry 
categories, so the list of keywords for these could be 
supplemented with other words that belonged to similar contexts. 
For example, if the analysis was to show that placenames 
(“Glasgow”, “Edinburgh”) were common occurrences, then an 
appropriately extensive list of placenames would need to be 
compiled. These keywords in essence are identifiers for the 
categories they represent. 
Although early research by Kincaid and Dupont [22] had 
highlighted some of the categories of entries commonly 
encountered in calendars, it was felt necessary to re-investigate 
this matter, firstly due to the age of the preceding research (which 
was not based entirely on electronic calendars), and secondly to 
tune the system performance for use by individuals in an 
academic context. Because the subjects of our final experiments 
were expected to be from an academic environment, it appeared 
reasonable to attempt to gear the system towards the 
particularities of the academic community. The system could have 
similarly been geared towards other professional areas or could be 
tailored towards a general population. This would require the 
selection of appropriate test subjects and since the comparison of 
performance on different target groups is not part of the scope of 
this research, the academic sample and subjects were judged to be 
appropriate and adequate.  
From our research in the categorization of entries, it immediately 
became clear that the calendar entries tend to fall within specific 
categories. The categorisation of the entries was done manually, 
with guidance from the original entry authors, where ambiguity 
made it necessary. This categorisation comes as a confirmation of 
the findings of previous research, and especially those of Kincaid 
and Dupont, who discovered that users tend to use their calendars 
mainly to keep a record of meetings, appointments, events, travel, 
reminders, notes and as “to do” lists. This, in turn, suggests that 
there is a consensus to the items that form appropriate calendar 
entries and that there is a common mental representation model 
for the organization of these entries amongst humans. There is a 
slight variation in the categorisation of entries that was made with 
these new findings, although this can be considered natural, due 
to the particularities of the academic environment. However, the 
categories with the highest frequency are the same as those in 
previous research. The table below shows the categories and entry 
frequencies as derived from this research’s sample. 

Category Frequency 

Meeting (Group) 53 

Meeting (another person) 25 

Reminder 18 

Travel 13 

Social event 13 

Work task 10 

Class (to attend) 10 

General Task (to-do) 7 

Miscellaneous 7 

Birthday 5 

Table 1: Calendar entry categories and their frequencies 

 
It is important to stress here that these categories reflect the 
opinions of the calendar users, who are highly familiar with the 
context of their entries. One can observe that there is some 
overlap between the calendar entries, for example, Birthday could 
be considered a subset of Social. However, where such overlap is 
maintained, it is because there was a strong indication from the 
users that such a low-level category is significant and should exist 
separately from its high-level parent.  
The database of category identifiers which would be compiled, 
would not exclusively contain words, but also short keyphrases, 
such as “travel to”. The reason for this choice was that it would be 
almost impossible to compile a list of every possible associated 
identifier for every category. Therefore by including keyphrases, 
we could infer that an unknown word which would follow these, 
might actually be a good identifier candidate. For example, “trip 
to Garnethill1” is a sentence where a human can immediately 
identify Garnethill as the name of a place, even though they might 
never have heard of it. It is also very unlikely that the name of 
Garnethill would come up in any general placename list. It was 
desired that same functionality for inferred knowledge should be 
implemented for the system as well.  
It might be argued that using pre-compiled lists and rules as a 
basis might not be an optimal solution. However, the process of 
recognising keywords and inferring their meaning based on pre-
compiled rules and lists is well-established practice in the field of 
Information Extraction. This practice is one of the two approaches 
generally available for solving the problem of machine text 
analysis and understanding, the other one being automatically 
trained systems that do not rely on hand-crafted rules and 
databases. Given the recommendations of Appelt and Israel [23] 
on the choice of approach and based on the good availability of 
resource lists (e.g. name and place lists) and the lack of extensive 
training data (calendar entries), the manual approach was elected. 
Further detail on the automatic categorization of calendar entries 
the performance of our algorithm are described in [31]. 

5.3 Formulating queries based on keywords 
With the appropriate keywords identified by the Keyword 
Generator module, the next step the system should take is to 
generate appropriate queries for these keywords. Sometimes a 
keyword on its own might be a good candidate for a query. 
However, in order to obtain information that is closer to the needs 
or preferences of the user, the keyword will have to be combined 
with other keywords to form longer queries. Those additional 
keywords can be obtained from the calendar entry itself, or could 
be retrieved from a separate database of additional keywords 
which are known to be typically included in queries that are based 
around the original keyword.  
To be able to adapt the system to the user’s preferences and 
needs, it becomes apparent that all additional keywords will need 
to be weighted in order of importance to the user. Because some 
of the additional keywords that will initially be provided might be 
irrelevant to the user’s context, the system should be able to either 
negatively weigh these, or increase the weight of additional 
keywords for which the user was presented queries that retrieved 
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“good” documents, while leaving other weights intact. A 
combination of positive and negative weighting can also be used. 
One approach to the problem of constructing an additional 
keyword database would be to create a list of potential 
associations for each keyword contained in the identifier database. 
In this manner, the level of relevance between identifiers and 
additional keywords would be high, although this would come at 
a considerable cost. The costs of this approach would firstly be 
the large degree of duplication of data, as an additional keyword 
might be relevant to a multitude of identifiers. Secondly the 
construction of appropriate additional keyword lists for every 
single keyword would have to be done manually and there is no 
guarantee that every single identifier would have an additional 
keyword to reflect all context scenarios. Finally, because of the 
specificity of the additional keyword associations, a sudden or 
temporary change of context for the user might be completely 
ignored or take a long time to adapt to, which is of course 
undesirable. 
An alternative approach would be to cluster the additional 
keywords into smaller databases, which will reflect the 
association of each keyword category, rather than each keyword 
individually, with additional keywords. The term of clustering is 
borrowed from the Information Retrieval field, where it is defined 
as follows: 

'…We define the organisation as the grouping 
together of items (e.g. documents, representations of 
documents) which are then handled as a unit and lose, to 
that extent, their individual identities. In other words, 
classification of a document into a classification slot, to 
all intents and purposes identifies the document with that 
slot. Thereafter, it and other documents in the slot are 
treated as identical until they are examined individually. It 
would appear, therefore, that documents are grouped 
because they are in some sense related to each other; but 
more basically, they are grouped because they are likely 
to be wanted together, and logical relationship is the 
means of measuring this likelihood…'2 

 
This is a more natural step to take, considering that calendar 
entries are already clustered into categories by nature. Therefore 
web queries will be made by combining the original keyword 
(category identifier) with either all or the top n additional 
keywords that are associated with the category. In fact, as the 
system becomes increasingly accustomed to the preferences the 
user, the user-defined n-sized window of additional keywords 
ranks should reflect the true preferences of the user by returning a 
smaller amount of keywords within the same window. 
The additional keywords can initially be set to have the same 
score, which would indicate an equal opportunity for each 
additional keyword to rise up in the ranks and therefore reflect a 
user’s preference, independently of that preference’s 
commonality. Alternatively, additional keywords can all be given 
different initial scores which would reflect the general preferences 
and assumptions that could be made for an average user. This 
                                                                 
2 HAYES, R.M., 'Mathematical models in information retrieval', 

in Natural Language and the Computer (Edited by P.L. Garvin), 
McGraw-Hill, New York, 287 (1963). 

would impede the training process for users that have very 
particular requirements, although for the majority of the users this 
method should provide adequately promising performance even 
from the early phases of use. We employed the second option in 
our implementation. 
In order to obtain additional keywords for each category, three 
different methods were used in conjunction: 

• Interviews where people were asked to give details of 
typical searches they might have performed for calendar 
entries of each category (during the calendar entry 
sample collection) 

• Calendar entry samples were given to independent 
subjects who were asked to produce as many web 
queries as they could for each entry sample 

• Google’s keyword suggestion tool3, where category 
identifiers were entered and a list of potential associated 
keywords was returned. 

In our implementation, the keyword analyser module forms the 
following two types of web queries: 

• Original keyword (or keywords, e.g. name+surname) 
only 

• Original keyword + additional keyword 

The system can currently be set-up to fetch the top N rated 
queries for each user, according to their rank value, although for 
the main experiment, the amount of generated queries was limited 
to the top 5 rated items. When two or more queries happen to be 
ranked equally, they are both included in the generated query list.  

5.4 Pre-caching documents 
Having described the methodology for formulating queries, the 
next logical step in the sequence of operation events for the 
system is to submit these queries into one or more search engines 
on the Internet, which in turn should be able to retrieve links to 
relevant documents. 
Those links should be followed in order to retrieve the documents. 
From within the documents, further links can be followed to 
documents within the same web site, or to documents that are 
external to the site. If those external documents were fetched and 
analysed, the system would encounter yet more links, which 
could also be retrieved. The retrieval process might be likened to 
a multi-tier tree, where a document from the original query can be 
considered a root, further linked from it are second-level nodes 
and links to further documents from these form edges that lead to 
even lower-level layers of nodes.  

                                                                 
3 Google Adwords keyword suggestion tool: 
 https://adwords.google.com/select/main?cmd=KeywordSandbox 



 
Figure 2: The multi-tier retrieval tree 

 
It becomes apparent that the system could be locked into a 
fetching mode, which will exponentially increase the number of 
documents retrieved, without guarantees that all of the lower-level 
nodes will be relevant to the original query. In fact, it is logical to 
expect that the degree of relevance will reduce with the increase 
of the depth of the retrieval tree. Considering Jansen’s [24] 
observation that only 50% of the original web documents 
retrieved from web queries are classed as “interesting” by users, 
the lack of any guarantee of relativity of all the supplementary 
retrieved documents is apparent. For this reason a control 
mechanism should exist, which will either limit the amount of 
levels the retrieval tree can have, or be able to intelligently predict 
whether a linked document might be worth pre-fetching. Based on 
the pre-fetching methods researched earlier for desktop computers 
and proxy caches, it becomes obvious that such decisions have to 
be based either on data from server request statistics or an 
analysis of the target document, in which case it needs to be 
fetched so it can be analysed. Such an implementation technique 
as the latter might be considered an interesting exploration for the 
adjustment of performance levels, however it is beyond the scope 
of this investigation. Therefore a logical solution for this problem 
under these circumstances would be to implement a mechanism 
that would limit the depth of the retrieval tree levels for each 
document. 
Further considerations would have to include the type of Internet 
content that the system should be able to store. Further from 
HTML documents which contain formatted text, other elements 
such as images, .pdf or .doc files, audio and video, might be 
desirable to have. All of these however place a considerable 
stretch of the memory limitations of current handheld devices. For 
this purpose, we carried out interviews with users in order to 
discover exactly what kind of content should be prioritised for 
pre-fetching. The results of the interviews showed an 
overwhelming preference to text (HTML, Word, PDF), while 
other media such as images, audio and video were considered 
largely irrelevant, unless a user was specifically looking for such 
types.  
Of the search engines available today on the Internet, the most 
successful is the Google engine4. This engine was chosen for the 
submission of the formulated web queries. An observation by 
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Jansen and Spink [25] indicated that the majority of users (80%) 
only view between ten and twenty results for each query, i.e. no 
more than one or two pages of results. Because the Google search 
engine can retrieve thousands of relevant results, a choice was 
made to limit the returned results to the top ten, as ranked by 
Google. It was felt that the choice to restrict the results to the top 
ten was justified, bearing in mind the memory constraints that are 
present on handheld devices. Furthermore, because Google is 
widely considered to be the best Internet search engine currently 
available, the choice was made not to submit the queries to other 
search engines. The comparison between the performance of 
Google and other search engines was not of interest for the 
purposes of this research and beyond this, such an attempt would 
greatly increase the amount of retrieved documents without any 
expected significant increase in the amount of retrieved relevant 
documents. This would place a significant and unnecessary 
burden on the subjects of the main experiment. Although 
collective filtering could be applied to perhaps include only the 
top K results from a number of search engines, it should be kept 
in mind that the optimisation of the cache, while desirable, was 
beyond the purposes of this research. Thus no services other than 
Google were employed in this instance. 
The Google result page is trimmed from all unnecessary HTML 
elements in order to remove graphics, advertisement and 
unnecessary links. Subdirectories are created to store all the 
documents of the desired tree depth levels. The retrieval 
procedure then works for each document of each tree level, 
including the Google result page, in the following manner: Firstly, 
the document is parsed and searched for links. Once a link is 
encountered, the linked document is retrieved and stored in the 
appropriate subdirectory. The link in the document under analysis 
is changed to reflect the local relative URL of the newly-fetched 
document. The process continues until no further links can be 
found in the document, in which case, the system moves on to the 
next document of the same depth level. In this manner, one can 
envisage a horizontal breadth-first traversal of the document 
traversal tree, in order to generate the lower levels of pre-fetched 
document. The entire process ends when the user-specified 
retrieval depth has been reached. 
Once the system is finished retrieving the top ten documents for 
each Google page, further transformation of the Google page is 
made. A second-level parsing is performed in order to separate 
the document titles, summaries and URLs contained therein, and 
store them in an XML structure. This XML structure will later be 
passed to the handheld device, along with the relevant documents, 
and will be used to display the retrieval results to the user.  

5.5 Mobile Component 
5.5.1 Presenting Results 
Once the documents have been retrieved and sent to the handheld 
device, a separate software component therein should be 
responsible firstly for displaying the documents to the user, and 
secondly for observing the interactions of the user with these 
documents. 
It is clear that for the first task, the design needs to consider the 
physical characteristics of the handheld device and especially the 
constraints placed by the dimensions of the device screen. Taking 
in mind Nielsen’s observations that users tend to dislike long 
pages which require lots of scrolling [26], an implementation of 



the results browser should be considerate of this natural tendency 
and contain facilities that will allow the users to minimise the 
scrolling needed. A collapsible tree-structured list of calendar 
entries, identified keywords, searches and retrieved document 
titles/summaries is potentially a good way of addressing the 
scrolling problem. Unfortunately, due to the nature of web pages, 
scrolling to view their content is inevitable. However the quality 
of the browsing is beyond the system’s control and will be fully 
dependent on the device’s integrated web browser. As this issue is 
beyond the scope of this research, no attempt to write a dedicated 
web browser was made. 

5.5.2 Processing relevance feedback 
Observing the interactions of the users poses several questions 
that need to be answered. Firstly, which actions of a user do 
reflect interest and therefore should be monitored? Secondly, 
once such actions are identified, do they all indicate the same 
amounts of interest or should their importance be weighted with 
different measures?  Based on previous related research, an 
instinctive negative answer to the last question is probably the 
right one. Indeed, as mentioned previously in chapter 2, it has 
been shown that not all kinds of interaction can provide 
dependable implicit information on relevance.  
On the handheld device, a log is kept of the user interactions with 
the content. Based on this information, an attempt should be made 
to judge the relevance of a given keyword from the knowledge 
base to the user’s context and determine which of these are likely 
to be wanted as part of a query in the future. Given the collapsible 
presentation structure, a log can be kept for: 

• The viewing of the document index for a given search 

• The viewing of the summary of a given document 

• The viewing of the document 

• The amount of time spent on a document that has been 
opened 

• Any explicit feedback rating that a user might provide 

for the document.  

The incorporation of further heuristics, such as pointer movement, 
highlighting of text, bookmarking and scrolling in the document, 
would also be desirable. However, given the implementation was 
on a PocketPC platform, programming Pocket Internet Explorer 
to trap such behaviours was not feasible. In addition, some of 
these heuristics (e.g. scrolling) would not be reliably applicable, 
given the lack of previous research on small screen devices for 
such measures.  
Upon loading, the handheld component examines the XML 
structure passed to it and the XML-formatted Google pages, in 
order to load the necessary details for presentation to the user. 
The pre-fetching activity details are presented using a collapsible 
tree structure list, which gives details of the appointments, 
keywords identified, web queries formed and document titles of 
each search (see figure 3).  
When a document title is highlighted, the user is given the option 
via two buttons to either launch a descriptive summary of the 

document, or open the document with Pocket Internet Explorer. 
The system monitors the collapse of the document list for a web 
query, the viewing of a summary, the launch of Pocket Internet 
Explorer and the duration for which it is active, i.e. in the 
foreground. It is assumed that the user will be reading the 
document for that time. Also, when Pocket Internet Explorer exits 
and the user returns to the handheld software that is running in the 
background, an option is given to explicitly rate the quality of the 
document just read on a scale of 1-5 (figure 4). 

 
Screen 1: Calendar entry list 

 
Screen 2: Calendar entry 
details 

 
Screen 3: Queries formed for a 
keyword 

 
Screen 4: Document list for a 
query 

Figure 3: The mobile User Interface, showing the collapsible 
tree list. Each keyword under a given calendar entry (title), 
can be expanded to show the queries formed for it. For each 

query, a list of retrieved documents is provided.  
To implement the document summary function, the short 
document narrative that Google provides directly under the 
document title in its results page is used. This is displayed as a 
pop-up dialog box to the user, upon request, therefore imposing 
an interaction cost on its viewing (figure 4). 

 



  
Figure 4: The auto-summary function and the explicit 

relevance feedback screens. 
 

5.6 Processing relevance feedback 
For the heuristics mentioned above, we had to devise appropriate 
weights and a method to combine their values to form a score for 
each keyword. We define the importance I(k) of a keyword k to be 

∑+= )()( )( iEk DwI
k  

where w is the weight associated with a viewed document index 
for the keyword E(k) ∈ {0,1},  and D(i) is the importance of each 
document i that has been retrieved for keyword k. Further more, 
we defined D(i) as follows: 
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where O(i ) indicates the viewing of document i, S(i) indicates the 
viewing of its summary, F(i) is the explicit feedback given by a 
user to the document , T(i) is the time spent reading the document 
and α, β, γ, ε are the respective weights for each of these 
measures. 

The weights w, α, β, γ and ε take positive or negative values. We 
wanted a mechanism that would promote the appearance of 
preferred keywords in the queries. However, the negative marking 
for undesirable keywords would not only allow the improved 
promotion of desirable keywords, but also, should one of the 
latter become undesirable, due to perhaps the change of context of 
the user, it would not take too long for it to start disappearing 
from the queries. 
We experimented with several weights for our system and we 
arrived to the conclusion that it is not only important to consider 
the relationship between the weights, but also the bias towards 
positive or negative marking. Current research [8] shows that 
users will view only two or three (on average) documents per web 
query and the vast majority will visit at most 2 pages or results 
(approximately 20 results in all). The same research shows that an 
estimate of 50% of documents viewed from these results are 
expected to be relevant to the query. Therefore we decided that a 
bias of approximately 1:7 in favor of positive marking was 
reasonable. Because our queries will not generate more than 10 
documents each, this means that two documents with a positive 

overall rating will indicate a successful and relevant query was 
made. The weights that were used were as shown in table 2. 
There was some confusion as to the weights ε which should be 
used for association with the reading time interest indicator. As 
mentioned in chapter 2, previous research highlights a possible 
correlation between average reading time and relevance of a 
document. However, all previous research had been conducted on 
desktop computers, where screen readability issues were not as 
much of problem. The initial inclination was to apply a tiered 
weighting system according to the reading time averages reported 
by Claypool [27]. The weights for each metric were chosen on an 
ad-hoc basis, mainly through consultation with the main 
experiment’s control group subjects and their observed 
interactions with the system. From the figure below, it becomes 
immediately obvious that there is quite some overlap between the 
distributions of reading times for each explicit rating, something 
which makes it difficult to accurately infer document relevance 
from reading time alone, in most cases.  After experimentation, 
(described in section 5), it was decided also that these average 
reading times were completely irrelevant to the handheld device 
environment. In fact, it was discovered that no distinct correlation 
could be made between reading time and document relevance on 
a handheld device, so the decision was made to abandon this 
metric completely.  
 

Weight Value 

α -0.03 (document not opened) 
+0.03*7 (document opened) 

β -0.021 (summary not viewed) 
+0.021 (summary viewed) 

γ -0.15 (feedback=1) 
-0.075 (feedback=2) 
0.00 (feedback=3) 
+0.15*6 (feedback=4) 
+0.15*7 (feedback=5) 

ε Inconclusive 

Table 2: Keyword score adjustment weights as used in the 
system implementation 

5.7 Limitations of the system 
We would have liked to be able to incorporate further heuristics, 
such as pointer movement, highlighting of text, bookmarking and 
scrolling in the document. However, given the implementation 
was on a pocketPC platform, programming pocket Internet 
Explorer to trap such behaviors was not feasible. In addition, 
some of these heuristics (e.g. scrolling) would not be reliably 
applicable, given the lack of previous research on small screen 
devices for such measures. Indeed, further on, we describe how 
we were forced to also exclude reading time from our heuristics. 
Further more, we decided not to pre-cache images or other media 
(pdf, word), purely for reasons of storage space constraints. 
 



 
Figure 5: Claypool’s findings on relevance and reading time 

correlation 

6. EXPERIMENTATION 
6.1 Experiment design 
Having implemented a full system, as detailed in the previous 
section, it was time to test its performance and determine whether 
the hypotheses proposed by this thesis could actually be met.  
Ideally the system should be given to several users and they 
should be allowed to run it for a period of time which should be 
as long as possible. However, given the lack of volunteers that 
would be willing to run the experiment as part of their everyday 
routines and also given disproportionately large timescale the 
experiment would take, a decision was made to test the final 
system under supervised conditions which would simulate real 
world scenarios as closely as possible. 
Two groups of users were given the same scenario with some 
details of their imaginary living location, job and a list of some 
names of people and how they would be related to them. 
Furthermore, over the duration of three weeks, the users would be 
given five tasks per week that form their hypothetical schedule of 
activities for that week. These activities were given in the form of 
a calendar entry that contained a title, location and notes for each 
one. Some activities did not contain items in the location or notes 
fields, as they were based on real-world entries that we had 
collected in previous studies. The users were also given clear 
instructions on the exact meaning of each entry, through the 
provision of accurate descriptions of the entries (see appendix 6).  
The users were then allowed to freely navigate through the pre-
cached content that was fetched for these hypothetical schedules, 
and try to locate content that they thought might be helpful to 
them. We would also ask the users to give an indication of 
whether they found the provided content for each activity useful. 
It was decided that the users should not be told that their 
behaviours would be logged. Also, one of the groups would have 
their logs analyzed and we would attempt to provide them with 
content that was personalized on the basis of these logs. Again, 
the groups would not be made aware of this discrepancy until 
after the experiment had ended. The analysis of the logs was done 
automatically by the system, as described in section 3.9, for each 

of the monitored subjects individually. Their respective profiles 
were maintained and updated at the end of each session, therefore 
influencing the retrieval process to personally match each of the 
monitored group’s subjects. 
Finally, another factor which was considered in the experiment, 
was that the physical storage limitations for the devices used led 
to a choice to pre-cache only HTML documents, and furthermore, 
these were restricted to the documents proposed by Google for 
each search. Effectively this meant that the retrieval tree was 
limited to just one level. For a first-level document that contains 
three hyperlinks, a two-order retrieval means a total of three 
documents retrieved. The amount of generated documents from 
just the one-level tree (table 16) was very large and this would 
only grow further with the implementation of additional levels. 
Therefore, in order to avoid overloading the user with documents 
and to overcome storage limitation problems, the choice was 
made to restrict the retrieval tree to just one level.  Further to this, 
the focus was placed on the four most popular categories, 
according to the findings of the query test. Therefore the calendar 
sets given contained only entries of type Meeting, Travel and 
Social (including Birthday) 

6.2 Initial experiment setup 
An initial group of ten subjects volunteered to test the system 
before we proceeded with the actual experiment. All of the 
subjects were from a similar background and considered 
themselves computer literate, although most did not have previous 
experience with a PDA. The initial group was given different, but 
similar in context, data than those that would participate in the 
actual experiment; however, the rules of the experiment were the 
same, apart from the duration of the experiment, which would 
only encompass the virtual timeframe of one week. The goal of 
this initial experiment was to ensure the system ran smoothly with 
users that were unfamiliar with it. A further, and more important 
goal, was to observe the average reading times for the web 
documents and their relation to explicit feedback, as we planned 
to use this metric for implicit relevance feedback.  
Having analysed the results of these initial groups, it was 
observed that the average reading times were not what we 
expected, and were certainly in contrast with previous research 
such as that mentioned in Section 4. 

Initial group average reading times vs. feedback
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Figure 6: Initial group average reading times vs. feedback 

ratings 



 
It is clear from this graph that the users take, on average, the same 
amount of time to distinguish between either relevant or largely 
irrelevant documents. Therefore it is apparent that the use of time 
as a metric is not a reliable source of information, since there is 
not much significant discrepancy between the average reading 
times for each feedback score. This observation brought about the 
decision to eliminate this metric from the weight recalculation 
formula, as it is in contrast with other findings, such as those by 
Morita [28] and Claypool [27], but seem to confirm Kelly’s [29] 
conclusion that reading time is an unreliable source for implicit 
relevance feedback. While our research and that of Claypool’s use 
scales of 1-5, Kelly uses a scale of 1-7. However what is more 
interesting than the direct comparison of observations is the 
fluctuation between these. 
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Table 3: Studies on average document reading times (msec) 

vs. perceived document usefulness 

6.3 Actual experiment 
For our actual experiment, two groups of ten people each were 
used. The rules were applied in full this time and we were able to 
obtain some interesting results at the end of the experiment. 
Unfortunately, due to data corruption on the logs of two members 
of one group, we were forced to exclude them from the analysis, 
removing also two random members from the other group, to 
make the figures directly comparable. 
In the following graphs (fig. 7), a representation of the average 
reading times for both groups, over the three experiment weeks is 
depicted.  
The trend shown here is slightly different from the results of the 
initial group. This is expected as the data for the two groups were 
not the same. However, again from this graph one can clearly see 
that determining a relationship between feedback and reading 
time is not feasible. The average reading times for the top two and 
the worst mark are very close, making any secure distinction 
between the two almost impossible. Further to this, it is surprising 
that the group behaviour for all three weeks shows similar trends. 
This finding seems to confirm our suspicion that average reading 
times are strongly dependent on each individual test group 
characteristics and cannot thus be easily generalized. 
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Figure 7: Experiment group average reading times vs. 

feedback ratings 
 
Further analysis of the results should show whether there is a 
trend in the improvement of cache hits for the group whose data 
was tuned according to their previous logs. The following two 
tables show the numerical and percentile quantities of the opened 
documents (cache hits) vs. the total documents offered. 

 Group 1 Group 2 Joint 
Week 1 8,6% 24,4% 16.5% 
Week 2 16.5% 18% 17.7% 
Week 3 24.8% 30.5% 27.8% 

Table 4: Total documents vs. Opened documents (percentage) 
 
 

Group1 Group2 Joint  

Total  Opened Total Opened Total Opened 

Week 
1 

1464 127 1464 357 2928 484 

Week 
2 

1879 31 1880 357 3759 667 

Week 
3 

1065 264 1248 381 2313 645 

Table 5: Total documents vs. Opened documents (absolute 
values) 

 
From table 4 above, one can clearly see an almost linear trend 
developing for group 1, who were the group that had their data 
adjusted according to their logs. This is a strong indication that 
for these users, the system provides an improvement in potential 
efficiency, if one considers that opening a document indicates the 
user’s potential interest in it. For group 2, a solid conclusion 
cannot be made, as the percentage rates seem to fluctuate almost 
randomly, affecting of course the joint outcome as well. It would 



appear that for this group, the nature of the entries in their given 
schedules is the only determinant in the percentage of documents 
opened. For group 1 however, it appears that the application of 
interest indicators found in previous logs, has a restraining effect 
to the fluctuation of the variation in percentages and an overall 
effect that shows increased performance of the system. 
As mentioned in section 4, a further indicator of interest in a 
document is its summary. A look at how many documents were 
judged by the summary reveals the following results: 
 

Group1 Group2  

Immediate 

Open  

After 

summary 

Immediate 

Open 

After 
summary 

Week 1 90 (65.6%) 37 (34.4%) 255 (71.4%) 102 (28.6%) 

Week 2 282 (90.9%) 28 (9.1%) 252 (70.6%) 105 (29.4%) 

Week 3 209 (79.1%) 55 (20.9%) 205 (53.8%) 86 (46.2%) 

Joint 

 Immediate Open After summary 

Week 1 345 (71.3%) 139 (28.7%) 

Week 2 534 (80%) 133 (20%) 

Week 3 504 (78.1%) 141 (21.9%) 

Table 6: Summary viewing as a deciding factor for opening a 
document. 

 
The percentages compare each figure with the total number of 
opened documents. From these trends we see that approximately 
only 1 in 4 times did the users consult the summary before 
making a decision. This suggests that a user will be inclined to 
navigate to a website based on the information contained in its 
title solely. A higher percentage was expected in this situation, 
especially since visiting a document is costly (in terms of loading 
and reading time) and also because in the implementation, explicit 
feedback was requested after each user had finished reading. 
According to Nielsen [26] also, users tend to like summaries and 
will read them before resuming with the rest of the text. However, 
it must be noted here that the summaries were only displayed on 
demand, while the document titles were immediately available. 
This was a necessary tradeoff in order to reduce the scrolling 
required for the retrieval results overview, although the action of 
opening a summary incurs an additional cost to the subjects. 
Finally, the following table takes a look at the average document 
scores for each session: 

 

 Group 1 Group 2 Joint 
Week 1 2.26 2.37 2.44 
Week 2 2.60 2.38 2.48 
Week 3 2.49 2.36 2.42 

Table 7: Average document scores (0-lowest, 5-maximum) 
 
It would appear from this table that the scores remain at a 
constant level and in fact, at around the middle of the scoring 

table. This in turn is consistent with the results by Jansen 
[Jans03], where it is mentioned that users should expect 1 of 2 
web documents they view to be relevant. 
The choice was made not to measure the individual scores 
attained by each group in order to establish a trend. These would 
be actually just measuring the ability of Google to return relevant 
results, where as this research is only concerned with measuring 
the relevance of the web query in the context of the calendar entry 
and the user’s needs.  

6.4 Further discussion 
6.4.1 Experimental environment 
The experiment was performed in a quiet room. This setting 
might not appear to be realistic in the sense that there were no 
external distractions for the subjects, although they were given 
food and drink and were allowed to communicate and interact 
with each other. Mobile devices are used in both mobile and 
stationary environments and since the experiment shows that 
reading times are not long (around 25 seconds), it is expected that 
a mobile user could easily dedicate such small times to interact 
undisturbed. I perceive the notion of “mobile” to mean “out of 
office” rather than “walking” or “driving”, therefore the setting 
seems adequate for the purposes of the experiment. In any case, a 
maximum time limit of 2 minutes, based on the observations from 
an initial test group, is imposed on the measuring to eliminate 
gross inaccuracies due to user distraction.  Therefore it can be 
concluded that the environment settings for the experiment were 
appropriate for its purposes and did not deduct from its 
credibility. 

6.4.2 Statistical Confidence 
Further to the results of the test, a two-paired T-Test was 
conducted in order to investigate the statistical significance of the 
findings that were observed, in relation to the improvement of 
cache hit-rate improvement for the two groups. The t-test was the 
recommended approach as the experiment dealt with two groups 
of different subjects, who came however from a homogenous 
background, for one of which an external factor was applied and 
its effect was observed. This external factor was the monitoring 
and consideration of interaction and feedback behaviour, and its 
implication in the retrieval process. 
The cache hit rates between week 1 and week 3 were measured 
for each individual subjects and their difference was analysed. 
The findings of the t-test are summarised in table 8 below. With a 
statistical probability of error of approximately 1.2% when 
considering whether the external factor was indeed responsible for 
the cache hit-rate improvement, the credibility of the results is 
further enhanced.  

Meana—
Meanb     t   df 
0.1003   2.4985 14 
P       
one-tailed   0.01277     
two-tailed  0.02554     

Table 8: T-test results 



6.5 Summary of Findings 
Several important conclusions were reached by this experiment. 
Firstly, the system shows that useful Internet content can indeed 
be pre-cached based on calendar information alone. This is shown 
by the cache hit rates, which rose close to 30%. Another 
important finding was that the reading behaviour of the subjects 
when faced with documents on a small screen, showed that the 
time spent on a document does not accurately reflect the quality 
of the document. A correlation between these two cannot be 
established, therefore the use of reading time for implicit 
relevance feedback on small screen devices is not recommended. 
Finally, and perhaps most importantly, the results of this 
experiment show a gradual, almost linear improvement of the 
retrieval performance for the group whose behaviours were taken 
into account. Although the duration of the experiment could have 
been longer, the statistical confidence is such that it can be argued 
that the results are solid enough to provide adequate confirmation 
of a promising learning curve performance. 

7. Discussion and future work 
We described a pre-caching system which is based on the 
information found in electronic calendars, in order to provide 
useful content for a user with a small mobile computing device. 
While such a system in its own right would not be able to 
completely satisfy all of a user’s internet content needs or desires, 
we show that this system it can indeed provide useful content for 
the appropriate entry categories. Even in the case of entries where 
the information contained therein comprises of a single word, the 
automatic generation of web queries based on common 
knowledge and the users’s preferences proves to be able to 
provide meaningful and useful content. 
While in this instance we chose to focus on the contextual 
information that could be obtained from electronic calendars, it is 
possible to foresee an expansion of the system which may make 
use of additional sources of information. Some examples could be 
the scanning of a user’s email inbox, SMS inbox or Instant 
Messaging backlogs for information on upcoming activities. It is 
common these days that meetings are arranged through email and 
tasks are also delegated through this medium. Thorough analysis 
of email messages would require a careful natural language 
processing, we believe that such a process would be a very 
valuable source of information. 
Given the opened document trends as described previously, we 
have reason to believe that our system is able to adapt accordingly 
to the individual preferences of a user. A further trial over an 
extended period of time, preferrably over 6 months, would be able 
to show the fluctuation between improvement rates and whether a 
peak is reached, which would indicate the system’s optimum 
performance level. A foreseeable problem with our current system 
is that the current adaptation algorithm adjusts the system 
gradually, and not abruptly, to the needs of a user. Thus, if a 
dramatic change of circumstances was to occur, or if a user was to 
require information from a very specific and known source, it is 
likely the system would fail to provide the necessary information. 
To that extent we programmed the system so that if a calendar 
entry contained a website address in the Notes section, that URL 
would automatically be pre-cached. However, our interest 
focussed on the adaptability algorithm and the usefulness of 

calendar entries as a source of contextual information, thus our 
experiment did not include the usage of this convenience. 
Further to this, the system currently lacks the ability to 
automatically add keywords to its knowledge base. Such an 
inclusion, we believe, would help dramatically in the 
improvement of the system’s performance. 
Apart from the findings that were part of our main target, we 
encountered several other interesting facts. The similarity 
between decision times for judging positively or extremely 
negatively against a document prohibits the use of such a metric 
from any further studies. Further to this, we were also impressed 
by the low reading times, which are in stark contrast with other 
studies that are concerned with the average reading time of a web 
document, such as [28], [27]. Other studies report average reading 
times closer to the ones we experiences, but again higher 
[29],[30], although these were not based on web documents. 
However, all of these previous studies relate to documents viewed 
on a desktop, where a large monitor facilitates the viewing of 
documents. It is our assumption that the smaller reading times on 
the handheld indicate a tendency for users to “skim” through the 
document in order to decide on its usefulness. This should be 
considered normal, given that the need for immediate and full 
comprehension of the information in the text was not there (due to 
the virtual environment). Therefore the users would try to acquire 
a general “feel” for the quality of the searches, and refer to these 
later on when they have more time or immediately need the 
information. Nielsen argues that scanning the text in a web 
document is common practice. Further more, in his work, long 
pages that cause lots of scrolling are considered to be largely 
disliked by users. Since the limited size display on a handheld 
causes websites to appear unproportionately large and causes lots 
of scrolling, our findings of reduced reading times seem to be 
further supported by these statements. 
The reduction of used bandwidth was a starting point in our 
thinking; however, starting from thinking about how we could 
reduce the need for mobile bandwidth, we became interested in 
examining calendars as a source of contextual information. The 
significance of the findings of this study do not relate solely to 
how bandwidth can be reduced. Rather, with the discovery of 
patterns in electronic calendar use and the automatic de-ciphering 
of calendar entries, one could proceed in solving other problems 
in the usability of mobile devices, or invent new services. 
(Yet) unpublished work that we have carried out draws upon the 
categorization of entries to improve the usability of calendars, 
firstly by implementing entry categories that reflect those truly 
needed by users (most mobile devices offer a categorization 
which is far too simplistic to address real user needs). Also, based 
on the categorization, entries could be colorized to carry layers of 
information such as type of entry (meeting, to-do, etc) and 
distance of event from current location. This would enable a 
mobile calendar to automatically adjust reminders, pre-fetch 
traffic information or building service information (e.g. lift 
status). 
Our work shows that de-ciphering calendar entries and 
automatically discovering which category they fall under can be 
used successfully in pre-caching internet content. However, the 
same technology can be used to solve other real needs in mobile 
device interaction, such as augmenting the usability of mobile 
calendars. 
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