Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Toxins from mamba venoms : small proteins with selectivities for different subtypes of muscarinic acetylcholine receptors

Jerusalinsky, D and Harvey, A L (1994) Toxins from mamba venoms : small proteins with selectivities for different subtypes of muscarinic acetylcholine receptors. Trends in Pharmacological Sciences, 15 (11). pp. 424-430. ISSN 0165-6147

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Muscarinic acetylcholine receptors exist as five subtypes that are widely distributed throughout the body. Conventional pharmacological agents are not highly selective for particular subtypes, making investigations on the functional significance of the subtypes difficult. Recent findings indicate that mamba snake venoms contain several small proteins ('muscarinic toxins') that are highly specific for muscarinic receptors, and are discussed in this review by Diana Jerusalinsky and Alan Harvey. Some of these toxins act selectively and irreversibly on individual subtypes of receptor, and some are antagonists, while others activate muscarinic receptors. The toxins should be useful tools in studies of the functions of individual receptor subtypes, and comparisons of their three-dimensional structures should give clues about how selective binding to muscarinic receptor subtypes can be obtained.