Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


(Bio)macromolecule directed synthesis of nano- and microparticles

Patwardhan, S V and Clarson, S J (2003) (Bio)macromolecule directed synthesis of nano- and microparticles. Abstracts of papers - American Chemical Society, 226. U405-U405. ISSN 0065-7727

Full text not available in this repository. Request a copy from the Strathclyde author


Nanoparticles possess shape and size dependant properties that can be utilized in various applications such as microelectronics, optically active materials, sensors, etc. Methods involving the synthesis and organization of such nanoparticles or nanocrystals are thus of interest. Routes to attain the design and creation of desirable architectures by organization of pre-synthesized nanoparticles using (bio)macromolecules such as DNA have gained attention in recent years. We will discuss bioinspired strategies to synthesize nano- and microparticles based on the use of functional (bio)macromolecules. Such (bio)macromolecules typically facilitate (bio)mineralization via ionic bridges and hydrogen bonding with the growing minerals. These interactions facilitate the self organization of the (bio)macromolecules that can create appropriate scaffolds for structure direction of the growing (bio)minerals. In addition, catalytic residues/sites become available for facilitating the growth of the mineral phase. This mechanism can be exploited not only for silica synthesis but also for the synthesis and nano-patterning of various other systems based on aluminum, germanium, boron, tin, silver, gold, iron, calcium and so on. It is clear that future research in the field of biomineralization and biomimetic materials synthesis based on these concepts will be highly fruitful.