Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Synthesis of amorphous germanium dioxide particles mediated by a macromolecule

Patwardhan, S V and Clarson, S J (2003) Synthesis of amorphous germanium dioxide particles mediated by a macromolecule. Abstracts of papers - American Chemical Society, 226. U361-U361. ISSN 0065-7727

Full text not available in this repository. (Request a copy from the Strathclyde author)


The unique optical properties of germanium dioxide or germania (GeO2), and in particular when compared with other glasses such as silicates, have attracted the attention of scientists and make them highly suitable for optoelectronic applications. Germanium is known to resemble silicon in some of its chemical properties. The recent findings on the importance of the role of the (bio)macromolecules in (bio)mineralization has led us to investigate the role of synthetic macromolecules in facilitating the formation of germania particles for the first time. One novelty is that the process described herein was carried out under ambient conditions and at neutral pH. Amorphous spherical germania particles were seen by scanning electron microscopy. Furthermore, when the reaction mixture was subjected to external shear, the formation of elongated rod-like germania structures was successfully achieved. This novel process is of importance for the design of new materials based on germania and silica-germania hybrids for potential applications such as their use in optical fibers.