Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Reinforcement of poly(dimethylsiloxane) elastomers using bioinspired silica

Taori, V P and Hassan, M K and Patwardhan, S V and Mark, J E and Clarson, S J (2004) Reinforcement of poly(dimethylsiloxane) elastomers using bioinspired silica. Abstracts of papers - American Chemical Society, 227. U443-U443. ISSN 0065-7727

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Elastomers typically require the incorporation of reinforcing fillers in order to improve their mechanical properties. Fumed and precipitated silica are made on an industrial scale for many applications including elastomer reinforcement. We have shown recently that biological and synthetic macromolecules can generate new silica structures using a bioinspired route. Herein we have incorporated bioinspired silica fillers into poly(dimethylsiloxane) elastomers. The equilibrium stress-strain characteristics of the elastomers were then determined as a function of filler loading. The thermal characteristics, in particular glass transition temperature and melting point of the elastomers were characterized using differential scanning calorimetry and the morphology of the samples and the filler dispersion were characterized using Scanning Electron Microscopy . Although spherical silica particles were used here, this bioinspired synthetic route also enables highly asymmetric silica structures to be prepared. This methodology therefore offers the interesting possibility of preparing hybrid systems where the properties are highly anisotropic