Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Spermine, spermidine and their analogues generate tailored silicas

Belton, D J and Patwardhan, S V and Perry, C C (2005) Spermine, spermidine and their analogues generate tailored silicas. Journal of Materials Chemistry, 15 (43). pp. 4629-4638. ISSN 0959-9428

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Biosilicifying organisms such as diatoms, sponges and higher plants deposit ornate "glassy" siliceous materials with well defined properties such as particle size and porosity at precisely controlled growth rates. Here we present the in vitro synthesis and characterisation of "glassy" silica with tailored properties by using naturally occurring amines - spermidine and spermine - and their analogues. These additives were found to regulate the growth rates, particle sizes, maturation, surface areas, porosities and morphologies of the siliceous materials prepared. In particular, the combination of unique catalytic effects and aggregation behaviours that are dependent on or related to chain length, intramolecular N-N spacing and C : N ratio of the additives was found to be responsible for controlling materials properties. Mechanisms regulating the generation of silicas showing a range of material characteristics are proposed.