Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

From biominerals to biomaterials: the role of biomolecule-mineral interactions

Perry, Carole C. and Patwardhan, Siddharth V. and Deschaume, Olivier (2009) From biominerals to biomaterials: the role of biomolecule-mineral interactions. Biochemical Society Transactions, 37. pp. 687-691. ISSN 0300-5127

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Interactions between inorganic materials and biomolecules at the molecular level, although complex, are commonplace. Examples include biominerals, which are, in most cases, facilitated by and in contact with biomolecules; implantable biomaterials; and food and drug handling. The effectiveness of these functional materials is dependent on the interfacial properties, i.e. the extent of molecular level 'association' with biomolecules. The present article gives information on biomolecule-inorganic material interactions and illustrates our current understanding using selected examples. The examples include (i) mechanism of biointegration: the role of surface chemistry and protein adsorption, (ii) towards improved aluminium-containing materials, and (iii) understanding the bioinorganic interface: experiment and modelling. A wide range of experimental techniques (microscopic, spectroscopic, particle sizing, thermal methods and solution methods) are used by the research group to study interactions between (bio)molecules and molecular and colloidal species that are coupled with computational simulation studies to gain as much information as possible on the molecular-scale interactions. our goal is to uncover the mechanisms underpinning any interactions and to identify 'rules' or 'guiding principles' that could be used to explain and hence predict behaviour for a wide range of (bio)molecule-mineral systems.