Picture of scraped petri dish

Scrape below the surface of Strathprints...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore world class Open Access research by researchers at Strathclyde, a leading technological university.

Explore

Oxidative stress in fungal fermentation processes : the roles of alternative respiration

Li, Q. and Bai, Z. and O'Donnell, A. and Harvey, L. M. and Hoskisson, P. A. and McNeil, B. (2011) Oxidative stress in fungal fermentation processes : the roles of alternative respiration. Biotechnology Letters, 33 (3). pp. 457-467. ISSN 0141-5492

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Filamentous fungi are arguably the most industrially important group of microorganisms. Production processes involving these simple eukaryotes are often highly aerobic in nature, which implies these cultures are routinely subject to oxidative stress. Despite this, little is known about how filamentous fungi cope with high levels of oxidative stress as experienced in fermenter systems. More surprisingly, much of our knowledge of oxidative stress responses in fungi comes from environmental or medical studies. Here, the current understanding of oxidative stress effects and cellular responses in filamentous fungi is critically discussed. In particular the role of alternative respiration is evaluated, and the contributions of the alternative oxidase and alternative dehydrogenases in defence against oxidative stress, and their profound influence on fungal metabolism is critically examined. Finally, the importance of further research which would underpin a less empirical approach to optimising fungal strains for the fermenter environment is emphasised.