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Abstract

In many read-world planning domains, generating good plan
quality is a central issue. This is especially true for prob-
lems with many solutions, or with many goals that cannot be
achieved altogether. We propose an extension to the PDDL
language that aims at a better characterization of plan qual-
ity by allowing the user to express strong and soft state con-
straints about the structure of the desired plans, as well as
strong and soft problem goals. In the plan quality evalua-
tion, soft goals and constraints are evaluated according the
their violation penalty weights, which are expressed by the
user in the plan metric. The new language, PDDL3, al-
lows us to distinguish alternative feasible plans (satisfying all
strong constraints and goals), preferring plans that minimize
the weighted violations for soft goals or constraints, possibly
combined with other plan quality criteria. We describe the
syntax and semantics of PDDL3.0 and we give several exam-
ples, including a domain from the very recent fifth Interna-
tional planning competition, which focused on soft trajectory
constraints and goals.

1 Introduction
The notion of plan quality in automated planning is of great
practical importance. In many real-world planning domains,
we have to address problems with a large set of solutions,
or with a set of goals that cannot all be achieved. In these
problems, it is important to generate plans of good or opti-
mal quality achieving as many goals as possible. When only
a subset of goals can be achieved (because they conflict with
each other, or because achieving all goals is computation-
ally too expensive), the ability to distinguish the importance
of different goals is critical.

PDDL is the standard planning language used in the
International planning competitors (Ghallab et al. 1998;
Fox & Long 2003; Edelkamp & Hoffmann 2004). The cur-
rent version of PDDL, PDDL2.2, allows us to express some
criteria for plan quality, such as the number of plan actions
or parallel steps, and relatively complex plan metrics involv-
ing plan makespan and numerical quantities. These are pow-
erful and expressive in domains that include metric fluents,
but plan quality can still only be measured by plan size in the
case of propositional planning. We believe that these criteria
are insufficient, and we propose to extend PDDL with new
constructs increasing its expressive power in specifying the
plan quality metric.

The proposed extended language, PDDL3, allows us to
express strong and soft constraints on plan trajectories (that

is, constraints over possible actions in the plan and interme-
diate states reached by the plan), as well as strong and soft
problem goals (that is, goals that must be achieved in any
valid plan, and goals that we desire to achieve, but that do
not have to be necessarily achieved).

Some informal examples of plan trajectory constraints
and soft goals in a blocksworld domain are: a fragile block
can never have something above it, or it can have at most
one block on it; we would like that the blocks forming the
same tower always have the same colour; in some state of
the plan, all blocks should be on the table; we would like
that in the goal state there is only one block on the table.

Some additional examples in a transportation domain are:
we would like that every airplane is used (perhaps because
it is better to distribute the workload among the available
resources and limit heavy usage); whenever a ship is ready
at a port to load the containers it has to transport, all such
containers should be ready at that port; we would like that
at the end of the plan all trucks are clean and at their source
location; we would like no truck to visit any destination more
than once.

Strong constraints and goals must be satisfied by any valid
plan, while soft constraints and goals express desirable out-
comes, some of which may be more preferred than others.
Informally, in planning with soft constraints and goals, the
best quality plan should satisfy “as much as possible” the
soft constraints and goals according to the specified prefer-
ence relation distinguishing alternative feasible plans (satis-
fying all strong constraints and goals).

While soft constraints have been extensively studied in
the CSP literature (e.g., (Dubois, Fargier, & Prade 1996;
Bistarelli, Montanari, & Rossi 1997; Rossi, Venable, &
Yorke-Smith 2004)), only very recently has the plan-
ning community started to investigate them (Brafman &
Chernyavsky 2005; Briel et al. 2004; Delgrande, Schaub,
& Tompits 2005; Miguel, Jarvis, & Shen 2001; Smith 2004;
Son & Pontelli 2004). A significant recent effort along this
direction has been undertaken by the fifth International Plan-
ning Competition (IPC-5), which focuses on planning with
soft goals and constraints using PDDL3.0 (Gerevini & Long
2005b), a first version of PDDL3 where we have imposed
some simplifying restrictions to the language to make it
more accessible for the competitors.

When we have soft constraints and goals, it can be use-
ful to give different priorities to them, and this should be
taken into account in the plan quality evaluation. While



there is more than one way to specify the importance of a
soft constraint or goal, as a first attempt to tackle this is-
sue, in PDDL3.0 we have chosen a simple quantitative ap-
proach: each soft constraint and goal is associated with a
numerical weight representing the cost of its violation in a
plan (and hence also its relative importance with respect the
other specified soft constraints and goals). Weighted soft
constraints and goals are part of the plan metric expression,
and the best quality plans are those optimising such an ex-
pression (more details are given in the next sections).

Using this approach we can express that certain plans are
more preferred than others. Some examples are: I prefer a
plan where every airplane is used, rather than a plan using
100 units of fuel less, which could be expressed by weighting
a failure to use all the planes by a number 100 times bigger
than the weight associated with the fuel use in the plan met-
ric; I prefer a plan where each city is visited at most once,
rather than a plan with a shorter makespan, which could
be expressed by using constraint violation costs penalising a
failure to visit each city at most once very heavily; I prefer
a plan where at the end each truck is at its start location,
rather than a plan where every city is visited by at most one
truck, which could be expressed by using goal costs penal-
ising a goal failure of having every truck at its start location
more heavily than a failure of having in the plan every city
visited by at most one truck. Other formalised examples are
given in following sections.

We also observe that the rich additional expressive power
we propose to add for goal specifications allows the ex-
pression of constraints that are actually derivable necessary
properties of optimal plans. By adding them as goal con-
ditions, we have a way to express constraints that we know
will lead to the planner finding optimal plans. Similarly, one
can express constraints that prevent a planner from exploring
parts of the plan space that are known to lead to inefficient
performance.

In the next sections, we present the main new features
of PDDL3.0, and we outline some possible desirable exten-
sions for the next versions of PDDL3.

2 State Trajectory Constraints
2.1 Syntax and Intended Meaning
State trajectory constraints assert conditions that must be
met by the entire sequence of states visited during the ex-
ecution of a plan. They are expressed through temporal
modal operators over first order formulae involving state
predicates. We recognise that there would be value in also
allowing propositions asserting the occurrence of action in-
stances in a plan, rather than simply describing properties of
the states visited during execution of the plan, but we choose
to restrict ourselves to state predicates in this extension of
the language.

The basic modal operators we propose to use in IPC-5
are: always, sometime, at-most-once, and atend (for
goal state conditions). We add within which can be used
to express deadlines. In addition, rather than allowing arbi-
trary nesting of modal operators, we introduce some spe-
cific operators that offer some limited nesting. We have
sometime-before, sometime-after, always-within.

Other modalities could be added, but we believe that these
are sufficiently powerful for an initial level of the sublan-
guage modelling constraints.

It should be noted that, by combining these modalities
with timed initial literals (defined in PDDL2.2 (Edelkamp
& Hoffmann 2004)), we can express further goal constraints.
In particular, one can specify the interval of time when a goal
should hold, or the lower bound on the time when it should
hold. Since these are interesting and useful constraints, we
introduce two modal operators as “syntactic sugar” of the
basic language: hold-during and hold-after.

Trajectory constraints are specified in the planning prob-
lem file in a new field. In addition, we allow constraints to
be specified in the action domain file on the grounds that
some constraints might be seen as safety conditions, or op-
erating conditions, that are not physical limitations, but are
nevertheless constraints that must always be respected in any
valid plan for the domain (say legal constraints or operating
procedures that must be respected).

Note that no temporal modal operator is allowed in pre-
conditions of actions. That is, all action preconditions are
with respect to a state (or time interval, in the case of
overall action conditions).

The specific BNF grammar of PDDL3.0 is given in
(Gerevini & Long 2005a). The following is a fragment of
the grammar concerning the new modalities of PDDL3.0 for
expressing constraints (con-GD):

<con-GD> ::= (at end <GD>) | (always <GD>) |

(sometime <GD>) | (within <num> <GD>) |

(at-most-once <GD>) |

(sometime-after <GD> <GD>) |

(sometime-before <GD> <GD>) |

(always-within <num> <GD> <GD>) |

(hold-during <num> <num> <GD> |

(hold-after <num> <GD> | ...

where <GD> is a goal description (a first order logic for-
mula), <num> is any numeric literal (in STRIPS domains
it will be restricted to integer values). There is a minor com-
plication in the interpretation of the bound for within and
always-withinwhen considering STRIPS plans (and sim-
ilarly for hold-during and hold-after): the question is
whether the bound refers to sequential steps (in other words,
actions) or to parallel steps. For STRIPS plans, the numeric
bounds will be counted in terms of plan happenings. For
instance, (within 10 � ) would mean that � must hold
within 10 happenings. These would be happenings of one
action or of multiple actions, depending on whether the plan
is sequential or parallel.

2.2 Semantics
The semantics of goal descriptors in PDDL2.2 evaluates
them only in the context of a single state (the state of ap-
plication for action preconditions or conditional effects and
the final state for top level goals). In order to give meaning
to temporal modalities, which assert properties of trajecto-
ries rather than individual states, it is necessary to extend
the semantics to support interpretation with respect to a fi-
nite trajectory (as it is generated by a plan). We propose a
semantics for the modal operators that is the same basic in-
terpretation as is used in TLPlan (Bacchus & Kabanza 2000)
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Figure 1: Semantics of the basic modal operators in PDDL3.

for OQP and other standard LTL treatments. Recall that a
happening in a plan for a PDDL domain is the collection of
all effects associated with the (start or end points of) actions
that occur at the same time. This time is then the time of the
happening and a happening can be “applied” to a state by si-
multaneously applying all effects in the happening (which is
well defined because no pair of such effects may be mutex).

Definition 1 Given a domain R , a plan S and an initial
state T , S generates the trajectory����� � ��	�
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Definition 2 Given a domain R , a plan S , an initial stateT , and a goal ^ , S is valid if the trajectory it gen-
erates,
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This definition contrasts with the original semantics of
goal satisfaction, where the requirement was that

�_�`�  ^ .
The contrast reflects precisely this requirement that goals
should now be interpreted with respect to an entire trajec-
tory. We do not allow action preconditions to use modal
operators and therefore their interpretation continues to be
relative to the single state in which the action is applied. The
interpretation of simple formulae, � (containing no modali-
ties), in a single state

�
continues to be as before and con-

tinues to be denoted
�a�  � . In the following definition we

rely on context to make clear where we are using the inter-
pretation of non-modal formulae in single states, and where
we are interpreting modal formulae in trajectories.

Definition 3 Let � and J be atomic formulae over the predi-
cates of the planning problem plus equality (between objects
or numeric terms) and inequalities between numeric terms,
and let

�
be any real constant value. The interpretation of

the modal operators is as specified in Figure 1.

Note that this interpretation exploits the fact that modal
operators are not nested. A more general semantics for
nested modalities is a straight-forward extension of this one.
Note also that the last four expressions in Figure 1 are ex-
pressible in different ways if one allows nesting of modali-

ties and use of the standard LTL modality until (more details
on this in (Gerevini & Long 2005b)).

The constraint at-most-once is satisfied if its argument
becomes true and then stays true across multiple states and
then (possibly) becomes false and stays false. Thus, there is
only at most one interval in the plan over which the argu-
ment proposition is true.

For general formulae (which may or may not contain
modalities):����� � ��	�
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Of the constraints hold-during and hold-after,
(hold-during fdg6fihkj ) states that � must be true during
the interval l � � ����m
 , while (hold-after f'j ) states that �
must be true after time

�
. The first can be expressed by using

timed initial literals to specify that a dummy timed literal d
is true during the time window l �d����� m 
 together with the goal
(always(implies d j )).
A variant of hold-during where � must hold exactly dur-
ing the specified interval could be easily obtained in a similar
way. The second can be expressed by using timed initial lit-
erals to specify that d is true only from time

�
, together with

the goal (sometime-after d j ).

3 Soft Constraints and Preferences
A soft constraint is a condition on the trajectory generated by
a plan that the user would prefer to see satisfied rather than
not satisfied, but is prepared to accept might not be satisfied
because of the cost of satisfying it, or because of conflicts
with other constraints or goals. In case a user has multiple
soft constraints, there is a need to determine which of the
various constraints should take priority if there is a conflict
between them or if it should prove costly to satisfy them.
This could be expressed using a qualitative approach but,
following careful deliberations, we have chosen to adopt a
simple quantitative approach for this version of PDDL.

3.1 Syntax and Intended Meaning
The syntax for soft constraints falls into two parts. Firstly,
there is the identification of the soft constraints, and sec-
ondly there is the description of how the satisfaction, or lack
of it, of these constraints affects the quality of a plan.



Goal conditions, including action preconditions, can be
labelled as preferences, meaning that they do not have to be
true in order to achieve the corresponding goal or precondi-
tion. Thus, the semantics of these conditions is simple, as
far as the correctness of plans is concerned: they are all triv-
ially satisfied in any state. The role of these preferences is
apparent when we consider the relative quality of different
plans. In general, we consider plans better when they satisfy
soft constraints and worse when they do not. A complication
arises, however, when comparing two plans that satisfy dif-
ferent subsets of constraints (where neither set strictly con-
tains the other). In this case, we rely on a specification of
the violation costs associated with the preferences.

The syntax for labelling preferences is simple:

(preference [name] <GD>).

The definition of a goal description can be extended to
include preference expressions. However, in PDDL3.0, we
reject as syntactically invalid any expression in which pref-
erences appear nested inside any connectives, or modalities,
other than conjunction and universal quantifiers. We also
consider it a syntax violation if a preference appears in the
condition of a conditional effect. Note that where a named
preference appears inside a universal quantifier, it is consid-
ered to be equivalent to a conjunction (over all legal instan-
tiations of the quantified variable) of preferences all with the
same name.

Where a name is selected for a preference it can be used to
refer to the preference in the construction of penalties for the
violated constraint. The same name can be shared between
preferences, in which case they share the same penalty.

Penalties for violation of preferences are calculated using
the expression

(is-violated <name>)

where <name> is a name associated with one or more
preferences. This expression takes on a value equal to the
number of distinct preferences with the given name that are
not satisfied in the plan. Note that in PDDL3.0 we do not
attempt to distinguish degrees of satisfaction of a soft con-
straint — we are only concerned with whether or not the
constraint is satisfied. Note, too, that the count includes each
separate constraint with the same name. This means that:

(preference VisitParis
(forall (?x - tourist)

(sometime (at ?x Paris))))

yields a violation count of [ for (is-violated
VisitParis), if at least one tourist fails to visit Paris
during a plan, while

(forall (?x - tourist)
(preference VisitParis

(sometime (at ?x Paris))))

yields a violation count equal to the number of people who
failed to visit Paris during the plan. The intention behind
this is that each preference is considered to be a distinct pref-
erence, satisfied or not independently of other preferences.
The naming of preferences is a convenience to allow dif-
ferent penalties to be associated with violation of different
constraints.

Plans are awarded a value through the plan metric, intro-
duced in PDDL2.1 (Fox & Long 2003). The constraints can
be used in weighted expressions in a metric. For example,

(:metric minimize
(+ (* 10 (fuel-used))

(is-violated VisitParis)))

would weight fuel use as ten times more significant than vi-
olations of the VisitParis constraint. Note that the vi-
olation of a preference in the preconditions of an action is
counted multiple times, depending on the number of the ac-
tion occurrences in the plan. For instance, suppose that p is
a preference in the precondition of an action � , which occurs
three times in plan S . If the plan metric evaluating S con-
tains the term (* k (is-violated p)), then this is in-
terpreted as if it were (* v (* k (is-violated p))),
where v is the number of separate occurrences of � in S for
which the preference is not satisfied.

3.2 Semantics
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is always true, so this allows preference statements to be
combined in formulae expressing goals. The point in mak-
ing the formula always true is that the preference is a soft
constraint, so failure to satisfy it is not considered to falsify
the goal formula. In the context of action preconditions, we
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(and (at package1 london)
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iff (clean truck1) Y � � .

If the preference is not satisfied, it is violated.
Now suppose that we have the following preferences and

plan metric:
(preference p1 (always (clean truck1)))

(preference p2 (and (at end (at package2 paris))

(sometime (clean track1))))

(preference p3 (...))

(:metric (+ (* 10 (is-violated p1)) (* 5 (is-violated p2))

(is-violated p3))).

Suppose we have two plans, S � , S m , and S � does not satisfy
preferences p1 and p3 (but it satisfies preference p2) andS m does not satisfy preferences p2 and p3 (but it satisfies
preference p1), then the metric for S � would yield a value
(11) that is higher than that for S m (6) and we would say thatS m is better than S � .

Formally, a preference precondition is satisfied if the state
in which the corresponding action is applied satisfies the
preference. Note that the restriction on where preferences
may appear in precondition formulae and goals, together
with the fact that they are banned from conditional effects,
means that this definition is sufficient: the context of their
appearance will never make it ambiguous whether it is nec-
essary to determine the status of a preference. Similarly, a
goal preference is satisfied if the proposition it contains is
satisfied in the final state. Finally, an invariant (overall)
condition of a durative action is satisfied if the correspond-
ing proposition is true throughout the duration of the action.

In some case, it can be hard to combine preferences with
an appropriate weighting to achieve the intended balance be-
tween soft constraints and other factors that contribute to the
value of a plan (such as plan make span, resource consump-
tion and so on). For example, to ensure that a constraint
takes priority over a plan cost associated with resource con-
sumption (such as make span or fuel consumption) is partic-
ularly tricky: a constraint must be weighted with a value that
is higher than any possible consumption cost and this might
not be possible to determine. With non-linear functions it
is possible to achieve a bounded behaviour for costs associ-
ated with resources. For example, if a constraint, � , is to be
considered always to have greater importance than the make
span for the plan then a metric could be defined as follows:
(:metric minimize (+ (is-violated C)

(- 1 (/ 1 (total-time))))).

This metric will always prefer a plan that satisfies � , but will
use make span to break ties.

Nevertheless, for the competition, where it is important
to provide an unambiguous specification by which to rank
plans, the use of plan metrics in this way is clearly very
straightforward and convenient. We leave for later proposals
the possibilities for extending the evaluation of plans in the
face of soft constraints.

4 Some Examples
In this section, we give some examples from well known do-
mains and also from one of the PDDL3 domains that have
recently been developed by the organizers of IPC-5: the
Travelling and Purchase Problem (TPP).1

1For IPC-5 several new domains involving preferences have
been defined. A detailed description of them is outside the scope

4.1 Blocks World and Rovers
The following state trajectory constraints could be stated ei-
ther as strong constraints or soft constraints.
“A fragile block can never have something above it”:
(always (forall (?b - block)

(implies (fragile ?b) (clear ?b))))

“A fragile block can have at most one block on it”:
(always (forall (?b1 ?b2 - block)

(implies (and (fragile ?b1) (on ?b2 ?b1))

(clear ?b2))))

“The blocks forming the same tower always have the same
color”:
(always (forall (?b1 ?b2 - block ?c1 ?c2 - color)

(implies (and (on ?b1 ?b2) (color ?b1 ?c1)

(color ?b2 ?c2))

(= ?c1 ?c2))))

“Each block should be picked up at least once”:
(forall (?b - block) (sometime (holding ?b)))

“Each block should be picked up at most once”:
(forall (?b - block) (at-most-once (holding ?b)))

“In some state visited by the plan all blocks should be on the
table”:
(sometime (forall (?b - block) (on-table ?b)))

This constraint requires all the blocks to be on the table
in the same state. In contrast, if we only require that every
block should be on the table in some state we can write:
(forall (?b - block) (sometime (on-table ?b)))

The following two examples use the IPC-3 Rovers domain
involving numerical fluents. “We would like that the energy
of every rover should always be above the threshold of 5
units”:
(always (forall (?r - rover) (> (energy ?r) 5))))

“Whenever the energy of a rover is below 5, it should be at
the recharging location within 10 time units”:
(forall (?r - rover)

(always-within 10 (< (energy ?r) 5)

(at ?r recharging-point)))

4.2 TPP
TPP is a relatively recent planning domain that has been in-
vestigating in Operation Research (OR) for several years.
TPP is a known generalization of the Travelling Salesman
Problem, and is defined as follows. We have a set of dif-
ferent types of goods and a set of markets. Each market is
provided with a limited amount of each type of goods at a
known price. The TPP consists in selecting a subset of mar-
kets such that a given demand of each type of goods can be
purchased, minimizing the routing cost and the purchasing
cost. This problem arises in several applications, mainly in
routing and scheduling contexts, and it is known to be NP-
hard. In OR, computing optimal or near optimal solutions
for TPP instances is an active research topic.

For IPC-5, several variants of this domain have been for-
malized in PDDL3.0. One of them is equivalent to the orig-
inal TPP, while the others are simplified or extended formu-
lations.2

of this paper.
2A description of each of these variants is available from the

website of IPC-5: http://ipc5.ing.unibs.it.



(:action drive

:parameters (?t - truck ?from ?to - place)

:precondition (and (at ?t ?from) (connected ?from ?to)

(preference p-drive (forall (?g - goods) (ready-to-load ?g ?from level0))))

:effect (and (not (at ?t ?from)) (at ?t ?to)))

(:action load

:parameters (?g - goods ?t - truck ?m - market ?l1 ?l2 ?l3 ?l4 - level)

:precondition (and (at ?t ?m) (loaded ?g ?t ?l3) (ready-to-load ?g ?m ?l2) (next ?l2 ?l1) (next ?l4 ?l3))

:effect (and (loaded ?g ?t ?l4) (not (loaded ?g ?t ?l3)) (ready-to-load ?g ?m ?l1) (not (ready-to-load ?g ?m ?l2))))

(:action unload

:parameters (?g - goods ?t - truck ?d - depot ?l1 ?l2 ?l3 ?l4 - level)

:precondition (and (at ?t ?d) (loaded ?g ?t ?l2) (stored ?g ?l3) (next ?l2 ?l1) (next ?l4 ?l3))

:effect (and (loaded ?g ?t ?l1) (not (loaded ?g ?t ?l2)) (stored ?g ?l4) (not (stored ?g ?l3))))

(:action buy

:parameters (?t - truck ?g - goods ?m - market ?l1 ?l2 ?l3 ?l4 - level)

:precondition (and (at ?t ?m) (on-sale ?g ?m ?l2) (ready-to-load ?g ?m ?l3) (next ?l2 ?l1) (next ?l4 ?l3))

:effect (and (on-sale ?g ?m ?l1) (not (on-sale ?g ?m ?l2)) (ready-to-load ?g ?m ?l4) (not (ready-to-load ?g ?m ?l3))))

Figure 2: Propositional version with preferences of the TPP domain developed for IPC-5.

Examples from the Propositional Version of TPP
Figure 2 shows the operators of the “Propositional” version
of TPP (with preferences) developed for IPC-5. This is a
simplified version of the original TPP, where the amounts
of goods that we can buy are discrete and are modeled by a
certain number of qualitative levels, that are specified in the
problem initial state. Moreover, goods have no price. Note
that each drive action has a soft precondition

(preference p-drive (forall (?g - goods)

(ready-to-load ?g ?from level0))))

expressing the preference that “a truck can move from a mar-
ket only if it leaves at that market no amount of purchased
(ready-to-load) goods”.

In the following, we illustrate several preferences over
goals and state trajectory constraints that are included in
a IPC-5 test problem for the propositional version of TPP
with preferences The first three sets of goal preferences, to-
gether with their penalty weights (see below), encode the
more global preference of “maximising the level of pur-
chased goods that are stored in a depot”, for each type of
goods specified in the initial state (in this problem, goods
have four levels):

(forall (?g - goods)

(preference G1 (exists (?l - level)

(and (not (= ?l level0)) (not (= ?l level1))

(stored ?g ?l)))))

(forall (?g - goods)

(preference G2 (exists (?l - level)

(and (not (= ?l level0)) (not (= ?l level2))

(stored ?g ?l)))))

(forall (?g - goods)

(preference G3 (exists (?l - level)

(and (not (= ?l level0)) (not (= ?l level3))

(stored ?g ?l)))))

Moreover, we prefer that “everything we buy is then stored
in a depot”, that is, that the level of the goods that we have

bought (that are ready-to-load), and that have been left
at a market or on a truck, is zero:

(forall (?g - goods)

(preference G4

(and (forall (?m - market)

(ready-to-load ?g ?m level0))

(forall (?t - truck) (loaded ?g ?t level0)))))

The soft state trajectory constraints in TPP Propositional are
the following ones. “Each market should be visited at most
once by a truck”:

(forall (?m - market ?t - truck)

(preference C1 (at-most-once (at ?t ?m))))

“Each type of goods should be loaded at most once in a
truck” (we want to buy and load the whole amount of the
goods before storing them in a depot).

(forall (?t - truck ?g - goods)

(preference C2 (at-most-once (exists (?l - level)

(and (loaded ?g ?t ?l)

(not (= ?l level0)))))))

“There should be at most one truck at a market at the same
time”:

(forall (?m - market ?t1 ?t2 - truck)

(preference C3 (always (imply (and (at ?t1 ?m)

(at ?t2 ?m))

(= ?t1 ?t2)))))

“Each truck should be used”:

(forall (?t - truck)

(preference C4 (sometime (exists (?g - goods ?l - level)

(and (loaded ?g ?t ?l)

(not (= ?l level0))))))))

“A particular type of goods (goods5) should be stored at
some level before another particular type of goods (goods4
or goods3) is stored at that same level” (in other words, the
level of goods5 should always be greater than or equal to
the level of goods3 and goods4):



(forall (?l - level)

(preference C5 (sometime-before

(and (stored goods4 ?l) (not (= (?l 0)))

(stored goods5 ?l))))

(forall (?l - level)

(preference C6 (sometime-before

(and (stored goods3 ?l) (not (= (?l 0)))

(stored goods5 ?l))))

The following is an example of plan metric for the previous
preferences. Note that preference p-drive is a soft precon-
dition of each drive action appearing in the plan:

(:metric minimize

(+ (* 1 (is-violated p-drive))

(* 12 (is-violated G1)) (* 10 (is-violated G2))

(* 8 (is-violated G3)) (* 4 (is-violated G4))

(* 1 (is-violated C1)) (* 1 (is-violated C2))

(* 2 (is-violated C3)) (* 3 (is-violated C4))

(* 13 (is-violated C5)) (* 13 (is-violated C6))))

Assuming that in the initial state there are four possible lev-
els for each type of goods, the decreasing penalty weights
associated with goal preferences G1–G3 encode the desire
that we maximise the level of stored goods (for each type of
goods, there is no penalty if we have four levels of stored
goods, and the higher is the level of the stored goods, the
less is the penalty we get).

In the particular TPP problem which the plan metric
above is associated with, in general the way we achieve
the goals is less important than achieving them. Thus, the
penalty for violating the preferences over trajectory con-
straints (C1–C4) and action preconditions (p-drive) are
lower than the penalties for violating soft goals. Prefer-
ences C5 and C6 are exceptions and have the highest penalty
weights. This is because in this specific problem it is very
important to keep a balance between the pair of goods in-
volved by these constraints (that is, the levels of goods3
and goods4 should never exceed the level of goods5).

Finally, note that constraints C5 and C6 may interfere with
goal preferences G1–G3, because the maximum levels of
available goods at the markets may be different for differ-
ent types of goods (as specified in the problem initial state).
For example, if the maximum level for goods5 is 2, then
constraints C5 and C6 impose that goods3 and goods4 can
never exceed this level (even if the an extra level of these
goods could be purchased).

Examples from the Metric-Time Version of TPP
The Metric-Time version of TPP is significantly more com-
plex than the Propositional one, and it is similar to the orig-
inal formulation of TPP, with some extensions. The hard
numeric goals are that the amounts of the stored goods are
not less than the corresponding amounts of requested goods,
which are specified in the initial state.

Concerning the goal preferences and soft constraints for
this domain version, most of them are similar to some of the
preferences for the propositional version of TPP, except that
here we use numerical fluents for expressing the amounts of
goods. Examples of additional soft constraint are
“whenever goods3 are loaded in a truck, goods3 should be
in a depot within 2390 time units” (because, for instance,
these goods get deteriorated by longer travels):

(forall (?t - truck)

(preference C7 (always-within 2390

(>= (loaded goods3 ?t) 0) (= (loaded goods3 ?t) 0))))

“The amount of certain goods stored in a depot should al-
ways be less than the amount of other particular goods”:
(preference C8 (always

(> (stored goods13) (stored goods6))))

“We start storing some particular goods only after we have
stored the requested amount of other particular goods”:
(preference C9 (sometime-before (> (stored goods12) 0)

(>= (stored goods2) (request goods2))))

“We start storing some particular goods only after we
have bought the requested amount of some other particular
goods”:
(preference C10 (sometime-before (> (stored goods10) 0)

(>= (bought goods8) (request goods8)))).

5 Extensions and Generalization
There is considerable scope for developing the proposed ex-
tension. First, and most obviously, modal operators could be
allowed to nest. This would allow a rich expressive power
in the specification of modal temporal goals. Nesting would
allow constraints to be applied to parts of trajectories, as is
usual in modal temporal logics. In addition, we could in-
troduce propositions representing that an action appears in a
plan.

Other modal operators could be added. We have excluded
them PDDL3.0 because we have found that many interest-
ing and challenging goals can be captured without them,
and we do not wish to add unnecessarily to the load on
potential competitors. The modal operator until would be
an obvious one to add. Without nesting, a related always-
until and sometime-until would allow expression of goals
such as “every time a truck arrives at the depot, it must stay
there until loaded” or “when the truck arrives at the depot,
it must stay there until cleaned and fully refuelled at least
once in the plan”. The formal semantics of always-until
and sometime-until can be easily derived from the one of
until in LTL. By combining always-until and other modali-
ties we can express complex constraints such as that “when-
ever the energy of a rover is below 5, it should be at the
recharging location within 10 time units and remain there
until recharged”:
(and (always-until (charged ?r) (at ?r rechargepoint))

(always-within 10 (< (charge ?r) 5)

(at ?r rechargingpoint)))

Another modality that would be an useful extension of
the expressive power is a complement for within, such as
persist, with the semantics that a proposition once made
true must persist for at least some minimal period of time.
Without nesting, a related always-persist and sometime-
persist would allow expression of goals such as “I want to
spend at least 2 days in each of the cities on my tour”, or
“every time the taxi goes to the station it must wait for at
least 10 without a passenger”.
The formal semantics of always-persist and sometime-
persist is given in Figure 3. A generalisation that would
allow within and persist to be combined would be to al-
low the time specification to be associated with a compar-
ison operator to indicate whether the bound is an upper or
lower bound.
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Figure 3: Semantics of always-persist and sometime-persist.

We have deliberately not introduced the operator next,
which is common in modal temporal logics. This is because
concurrent fragments of a plan might cause a state change
that is not relevant to the part of the state in which the next
condition is intended to apply. Furthermore, the fact that
PDDL plans are embedded on a real time line means that the
intention behind next is less obviously relevant. We realise
that next has been particularly useful in expressing control
rules for planners like TALPlanner (Kvarnström & Magnus-
son 2003) and TLPlan (Bacchus & Kabanza 2000), but our
intention in developing this extension is to focus on provid-
ing a language that is useful for expressing constraints that
govern plan quality, rather than for control knowledge. We
believe that the use of always-within captures a much
more useful concept for plan quality that is actually a far
more realistic constraint in modelling planning problems.

Extensions to the use of soft constraints include the def-
inition of more complex preferences, such as conditional
preferences, and a possible qualitative method for express-
ing priorities over preferences. Moreover, the evaluation
of the soft constraints could be extended by considering
a degree of constraint violation, such as the amount of
time when an always constraint is violated, the delay that
falsifies a within constraint, or the number of times an
always-after constraint is violated.

6 Conclusions
Planning has been tackling increasingly difficult problems
with greater success over recent years. An objective for the
community is to move the focus of research towards the so-
lution of problems with increasing relevance to application.
In many application areas, the quality of plans is central to
their usefulness. It is essential to consider the quality in
terms of constraints across the trajectories and in terms of
preferences that are imposed by the users. To manage these
problems, planning algorithms must have access to this in-
formation and we have proposed an extension to PDDL that
will provide this. The role of PDDL in forming a common
foundation for the extension of existing planning technology
has been proven repeatedly over the past 8 years. Although
the concepts of constraints, both hard and soft, are not new,
even to planning, the adoption of a common language and
the basis for benchmarks will play a central role in promot-
ing research into these areas. The interest in the 5th IPC is
already a clear demonstration of the way in which the re-
search agenda can be moved forward through the vehicle
of PDDL.
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