Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Using learned action models in execution monitoring

Fox, M. and Gough, J. and Long, D. (2006) Using learned action models in execution monitoring. In: 25th Workshop of the UK Planning and Scheduling Special Interest Group, 2006-12-14 - 2006-12-15.

[img]
Preview
PDF (strathprints003147.pdf)
strathprints003147.pdf

Download (777kB) | Preview

Abstract

Planners reason with abstracted models of the behaviours they use to construct plans. When plans are turned into the instructions that drive an executive, the real behaviours interacting with the unpredictable uncertainties of the environment can lead to failure. One of the challenges for intelligent autonomy is to recognise when the actual execution of a behaviour has diverged so far from the expected behaviour that it can be considered to be a failure. In this paper we present further developments of the work described in (Fox et al. 2006), where models of behaviours were learned as Hidden Markov Models. Execution of behaviours is monitored by tracking the most likely trajectory through such a learned model, while possible failures in execution are identified as deviations from common patterns of trajectories within the learned models. We present results for our experiments with a model learned for a robot behaviour.