Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Structures of piperazine, piperidine and morpholine

Parkin, A and Oswald, I D H and Parsons, S (2004) Structures of piperazine, piperidine and morpholine. Acta Crystallographica Section B: Structural Science, 60 (Part 2). pp. 219-227. ISSN 0108-7681

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The crystal structures of piperazine, piperidine and morpholine have been determined at 150 K. All three structures are characterized by the formation of NH...N hydrogen-bonded chains. In piperazine these are linked to form sheets, but the chains are shifted so that the molecules interleave. In morpholine there are in addition weak CH...O interactions. Topological analyses show that these three structures are closely related to that of cyclohexane-II, which can be described in terms of a pseudo-cubic close-packed array of molecules in a familiar ABC layered arrangement. While the positions of the molecules within each layer are similar, hydrogen bonding occurs between the ABC layers and in order to accommodate this the molecules are rotated relative to those in cyclohexane-II. Piperidine and morpholine also adopt layered structures, with hydrogen-bonding or CH...O interactions between the layers. In these cases, however, the layering more resembles a hexagonal close-packed arrangement.