Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Preparation and characterization of ibuprofen solid lipid nanoparticles with enhanced solubility

Potta, Sriharsha Gupta and Minemi, Sriharsha and Nukala, Ravi Kumar and Peinado, Chairmane and Lamprou, Dimitrios A. and Urquhart, Andrew and Douroumis, D. (2011) Preparation and characterization of ibuprofen solid lipid nanoparticles with enhanced solubility. Journal of Microencapsulation, 28 (1). pp. 74-81. ISSN 0265-2048

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Solid lipid nanoparticles (SLNs) loaded with ibuprofen (IBU) were prepared by solvent-free high-pressure homogenization (HPH). The produced SLNs consisted of stearic acid, triluarin or tripalmitin as lipid matrixes and various stabilizers. The produced empty and IBU-loaded SLNs were characterized for particle size stability over 8 months. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were implemented to characterize the IBU state of freeze-dried SLNs. IBU was found to be in both amorphous and crystalline form within the lipid matrix. The lyophilized powders showed increased dissolution rates for IBU depending on the lipid nature. SLNs were incubated in Caco-2 cells for 24 h showing negligible cell cytotoxicity up to 15 mg/mL.</.