Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Effect of lattice structure on energetic electron transport in solids irradiated by ultraintense laser pulses

McKenna, P. and Robinson, A. P. L. and Neely, D. and Desjarlais, M. P. and Carroll, D. C. and Quinn, M. N. and Yuan, X. H. and Brenner, C. M. and Burza, M. and Coury, M. and Gallegos, P. and Gray, R. J. and Lancaster, K. L. and Li, Y. T. and Lin, X. X. and Tresca, O. and Wahlstrom, C. -G. (2011) Effect of lattice structure on energetic electron transport in solids irradiated by ultraintense laser pulses. Physical Review Letters, 106 (18). ISSN 0031-9007

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The effect of lattice structure on the transport of energetic (MeV) electrons in solids irradiated by ultraintense laser pulses is investigated using various allotropes of carbon. We observe smooth electron transport in diamond, whereas beam filamentation is observed with less ordered forms of carbon. The highly ordered lattice structure of diamond is shown to result in a transient state of warm dense carbon with metalliclike conductivity, at temperatures of the order of 1-100 eV, leading to suppression of electron beam filamentation.