Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Rapid passage signals induced by chirped quantum cascade laser radiation: K state dependent-delay effects in the nu(2) band of NH3

Northern, J. H. and Ritchie, G. A. D. and Smakman, E. P. and van Helden, J. H. and Cockburn, J. and Duxbury, G. (2010) Rapid passage signals induced by chirped quantum cascade laser radiation: K state dependent-delay effects in the nu(2) band of NH3. Optics Letters, 35 (16). pp. 2750-2752. ISSN 0146-9592

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this Letter, a 10 mu m quantum cascade laser operating in the intrapulse mode is used observe rapid passage (RP) effects within a 40 cm single-pass gas cell containing low pressures of NH3. The laser tuning range allows the rotational states J = 2 with K = 0, 1, and 2 to be probed. We show that the RP structures change as a function of optical density and that the magnitude of the delay in the switch from absorption to emission as a function of increased gas pressure is dependent upon the initial value of K. These measurements are qualitatively well modeled using the Maxwell-Bloch equations.