Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Rapid passage signals induced by chirped quantum cascade laser radiation: K state dependent-delay effects in the nu(2) band of NH3

Northern, J. H. and Ritchie, G. A. D. and Smakman, E. P. and van Helden, J. H. and Cockburn, J. and Duxbury, G. (2010) Rapid passage signals induced by chirped quantum cascade laser radiation: K state dependent-delay effects in the nu(2) band of NH3. Optics Letters, 35 (16). pp. 2750-2752. ISSN 0146-9592

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this Letter, a 10 mu m quantum cascade laser operating in the intrapulse mode is used observe rapid passage (RP) effects within a 40 cm single-pass gas cell containing low pressures of NH3. The laser tuning range allows the rotational states J = 2 with K = 0, 1, and 2 to be probed. We show that the RP structures change as a function of optical density and that the magnitude of the delay in the switch from absorption to emission as a function of increased gas pressure is dependent upon the initial value of K. These measurements are qualitatively well modeled using the Maxwell-Bloch equations.