Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Peculiarities of mode spectrum in two-dimensional Bragg structures

Ginzburg, N.S. and Peskov, N.Y. and Sergeev, A.S. and Phelps, A.D.R. and Cross, A.W. (2005) Peculiarities of mode spectrum in two-dimensional Bragg structures. Optics Communications, 250 (4-6). pp. 309-315. ISSN 0030-4018

Full text not available in this repository. (Request a copy from the Strathclyde author)


The fundamental difference in the eigenmode spectrum for traditional one-dimensional (1D) periodical Bragg structures and novel two-dimensional (2D) periodical Bragg structures of planar and coaxial geometry is discussed. In the case of 1D Bragg structures, the eigenmode frequencies are located outside the Bragg reflection zone while for 2D Bragg structures the highest Q-factor modes are located just near to the frequency of Bragg resonance and the mechanism for the formation of these modes is related to the coupling of the longitudinal and transverse propagating wave fluxes. The main eigenmode possesses a Q-factor which substantially exceeds the Q-factor of the other modes even in the case when the system transverse size is much greater than the wavelength that encourage the use of 2D Bragg structures for mode selection in powerful oscillators with oversized microwave systems.