
This version is available at http://strathprints.strath.ac.uk/31258/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (http://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
1. Introduction

Deficiency in NO formation has been found in patients with primary pulmonary hypertension (Demonceaux et al., 2005) and in the hypoxic rat model of pulmonary hypertension (Weerackody et al., 2009). Tetrahydrobiopterin (BH$_4$) is an essential cofactor for nitric oxide synthase (NOS), and mice that have very low BH$_4$ tissue levels exhibit pulmonary hypertension (Khoo et al., 2005), which could be reversed by increasing BH$_4$ through targeted transgenic overexpression of GTP cyclohydrolase 1 (GTPCH-1) (Khoo et al., 2005). Using an experimental animal model of persistent pulmonary hypertension of the newborn (PPHN), it was found that the oxidised form, dihydrobiopterin (BH$_2$) is raised in the lungs (Grobe et al., 2006). Another animal model of PPHN, it was found that the levels of GTPCH-1 were depressed; moreover the administration of BH$_4$ combined with the superoxide dismutase mimetic MnTMPyP improved pulmonary artery relaxation (Nandi et al., 2006).

BH$_4$ depletion is believed to be due to oxidative stress since SOD overexpression restores both BH$_4$ content and activity of GTPCH-1, the rate-limiting enzyme in BH$_4$ synthesis (Farrow et al., 2008). The endothelial NO synthase (eNOS) enzyme generates superoxide when BH$_4$ levels decline or when it is replaced by an oxidised product, BH$_2$ (Crabtree et al., 2009; Vasquez-Vivar et al., 2002). In vitro administration of BH$_4$, or its physiological precursor sepiapterin, restored endothelium-dependent relaxation of resistance arteries in animal models of cardiovascular disease (Paniriselvam et al., 2003; Tiefenbacher et al., 2000) and in patients with endothelium dysfunction (Heitzer et al., 2000a,b; Higashi et al., 2006; Setoguchi et al., 2002). Since BH$_4$ is rapidly oxidised under physiological conditions, oral administration requires very high doses and is only briefly effective. Oral administration of BH$_4$ has been reported to improve endothelium function (Cosentino et al., 2008; Eskurza et al., 2005) and to reduce blood markers of oxidative stress in patients (Cosentino et al., 2008). Administration of BH$_4$ attenuated the rise in pulmonary artery pressure and reduced muscularisation of pulmonary artery rings. ADDP was administered to pulmonary hypertensive rats, followed by measurement of pulmonary vascular resistance in perfused lungs and eNOS expression by immunohistochemistry. ADDP and HMP caused significant relaxation in vitro in rat pulmonary arteries depleted of BH$_4$ with a maximum relaxation at 0.3 μM (both P<0.05). Vasodilator activity of ADDP and HMP was completely abolished following preincubation with the NO synthase inhibitor, L-NAME. ADDP and HMP did not alter relaxation induced by carbachol or spermine NONOate. BH$_4$ itself did not produce relaxation. In rats receiving ADDP 14.1 mg/kg/day, pulmonary vasodilation induced by calcium ionophore A23187 was augmented and eNOS immunoreactivity was increased. In conclusion, ADDP and HMP are two analogues of BH$_4$, which can act as oxidatively stable alternatives to BH$_4$ in causing NO-mediated vasorelaxation. Chronic treatment with ADDP resulted in improvement of NO-mediated pulmonary artery dilation and enhanced expression of eNOS in the pulmonary vascular endothelium. Chemically stable analogues of BH$_4$ may be able to limit endothelial dysfunction in the pulmonary vasculature.

© 2010 Elsevier B.V. All rights reserved.
distal pulmonary arteries in rats with monocrotaline-induced pul-
monary hypertension (Francis et al., 2009).
We believe that analogues of BH₄ with stable oxidative states
might be better alternatives to improve impaired relaxation associ-
ated with endothelial dysfunction and will indirectly substitute for
BH₄ in the vasculature. To explore this possibility, two analogues of
BH₄, namely 6-hydroxymethyl pterin (HMP) and 6-acetyl-7,7-
dimethyl-7,8-dihydropterin (ADDP), were obtained from the pro-
ducts of a large synthetic programme to generate biologically active
pteridines (Al Hassan et al., 1985). They were selected for their
chemical stability and similarity to the structure of BH₄ (Suckling
et al., 2008). The tetrahydro derivative of HMP has been shown to be
a BH₄ substitute (Kotsonis et al., 2001).
In the current study, we investigated the effects of these two
analogues on normal as well as BH₄-depleted pulmonary arteries.
We also report in vivo administration of ADDP on endothelium-
dependent vasorelaxation in a rat model of hypoxic pulmonary
hypertension.

2. Methods

2.1. Artery ring experiments

Male Sprague–Dawley rats of body weight approximately 175–
350 g were killed by cervical dislocation. The heart and lungs were
placed in either the chilled Krebs–Henseleit solution in experiments
where normal untreated arteries were used and in chilled tissue
culture medium when the artery rings were treated to deplete the
endothegenous levels of BH₄. The main pulmonary artery along with its
right and left extra pulmonary branches were dissected and divided
into four rings each 2–3 mm long. Pulmonary artery rings were
mounted on to a pair of intraluminal wires under 1 g resting force in
15 mL organ baths containing oxygenated (20% O₂, 5% CO₂ and 75% N₂
gas mixture) Krebs–Henseleit solution at 37 °C and contractile force
was measured.

Depletion of cellular BH₄ was carried out using 2,4-diamo-6-
hydroxypryrimidine (DAHP), which inhibits GTPCH₁, the key rate-
limiting enzyme in the synthesis of endogenous BH₄ (Bai and Koller;
Kinoshita et al., 1997; Wang et al., 2008). Artery rings were
incubated for 6 h at 37 °C in minimum essential medium containing
DAHP (10⁻⁴ M) (Kinoshita et al., 1997). Control arteries received
similar incubation omitting DAHP.

In experiments showing the effects of BH₄, ADDP or HMP in normal
or BH₄-depleted arteries the following protocol was used. After 1 h
equilibration of the tissue, arteries were precontracted with phenyl-
ephrine: 3.6×10⁻⁸ M (the EC₅₀ concentrations determined from
preliminary studies) followed by relaxation with 10⁻⁵ M carbachol to
clear the integrity of the endothelium. Preparations were rejected
if they did not produce a minimum of 80% relaxation to carbachol.

During the course of the experiments no visible lung oedema was
observed and this was confirmed by measuring the weights of the
lungs at the end of every experiment.

Drug-treated rats received ADDP during the period that they were
in the hypoxic chamber. ADDP was administered to the rats via
subcutaneous injections to give a dose of 14.1 mg/kg/day as daily
injections in the morning for both the hypertensive and the
normotensive groups of rats. The ADDP solution for injection
contained ADDP 100 mM ADDP dissolved in dimethyl sulfoxide.
The subcutaneous site of injection was in the neck region or on the back
of the rats avoiding the spine, and was changed every day in order to
prevent soreness at the site of injection.
Immunohistochemistry was used to perform eNOS staining on the lung sections as previously described (Grant et al., 2006). Lungs from normoxic and chronically hypoxic rats, which have been treated with or without ADDP were perfused with formalin, dehydrated, and embedded in paraffin wax and 3 μm sections were cut. The lung sections were rehydrated, treated with 0.3% H₂O₂ for 10 min to block endogenous peroxidase activity and then heated by microwave to expose the antigens. The sections were blocked with 20% normal goat serum then incubated for 1 h with mouse monoclonal anti-human eNOS primary antibody (1:2000) (BD Transduction Laboratories). Sections were then treated with biotinylated secondary antibody (30 min) followed by avidin-labelled horseradish-peroxidase (30 min) and then 0.5% diaminobenzidine tetrahydrochloride activated with 30% H₂O₂ (10 min). The sections were counterstained with haematoxylin. The slides were coded so that the investigator was not aware of their identity during scoring. Sections were viewed under 400× magnification allocating intensity scores from 0–3 for each section, where 0 represents no staining, 1 is mild or uneven staining, 2 is moderate staining and 3 represents maximum staining observed with the antibody at the highest level of eNOS expression encountered. Intermediate intensity levels gave scores of 0.5, 1.5 and 2.5. In each staining run negative controls were included, where sections were not treated with primary antibody.

The values are expressed as means ± standard errors of means (S.E.M.) where n = number of animals. Statistical tests were performed using analysis of variance general linear model (repeated measures design) to compare two cumulative dose–response curves generated in two different tissues, using Minitab. Histological scores were compared using Student’s unpaired t-test. The differences were treated significant if the P value \(\leq 0.05 \).

2.3. Drugs and solutions

BH₄ stock solution was stored at \(-20^\circ C\) and minutes before the addition into the bath a single aliquot was taken out, thawed and diluted. Working solutions were kept on ice at all times when outside and protected from light. Stock solutions of the ADDP and HMP (2 mM) were dissolved in 2 M NH₄OH. Further dilutions were made with distilled water and these were stored at 4 °C.

BH₄, DAHP and L-NAME were bought from Sigma Aldrich Ltd, Poole, Dorset, UK; Spermine NONOate from Merck Biosciences Ltd, Beeston, Nottingham, UK; Ham's medium (Nutrient mixture HAM F-12) and Waymouth medium MB 752/1 with L-glutamine were from Invitrogen Ltd, Paisley, UK. ADDP and HMP were synthesised as previously described (Suckling et al., 2008).

3. Results

3.1. Artery ring experiments

Both analogues of tetrahydrobiopterin produced dose-dependent relaxation in pulmonary arteries treated with DAHP. ADDP (6-acetyl-7,7-dimethyl-7,8-dihydropterin) produced a maximum relaxation at 0.3 μM of 28.1 ± 4.3% and HMP (6-hydroxymethyl pterin) produced a maximal relaxation at 0.3 μM of 18.8 ± 10.4% (Fig. 1A, B). ADDP-induced and HMP-induced relaxation were completely abolished following preincubation with the NO synthase inhibitor, L-NAME (300 μM) (Fig. 1A, B). However, in pulmonary artery rings that had not been treated with DAHP, ADDP had no significant effect, and the relaxation generated by HMP was reduced (Fig. 1C, D).

Relaxation induced by the NO donor spermine NONOate was unaltered by co-administration of either ADDP 0.3 μM or HMP 0.3 μM in DAHP-pretreated artery rings (Fig. 2A, B). Similarly, incubation with either ADDP or HMP (0.3 μM) did not have any effect on endothelium-dependent vasorelaxation caused by carbodiol in pulmonary arteries pretreated with DAHP (Fig. 2C, D).

Contrary to the effects of the BH₄ analogues ADDP and HMP, BH₄ itself did not produce any significant relaxation over a concentration range of \(10^{-8} \ldots 10^{-5} \) M. No relaxation occurred in pulmonary arteries, whether they had been pretreated with DAHP or not (Fig. 3A, B). Indeed the highest concentration of BH₄ induced a significant contraction (Fig. 3A, B). In addition, in pulmonary arteries we found that incubation with BH₄ (100 μM) resulted in reduction of potency of carbodiol-induced relaxation at the initial concentrations without altering the maximum relaxation obtained (Fig. 4A). The superoxide scavenger, MnTMPyP 30 μM did not prevent the contraction produced by BH₄ in pulmonary arteries (Fig. 4B).

![Fig. 1](image-url) Effects of ADDP and HMP in DAHP-treated (A, B respectively) and untreated (C, D respectively) phenylephrine-precontracted pulmonary arteries (● = ADDP, □ = ADDP + L-NAME, ▲ = HMP, △ = HMP + L-NAME, ◇ = vehicle control). Values are expressed as means ± S.E.M. and n = 5–9. *P ≤ 0.05 or **P ≤ 0.01 versus solvent control and ***P ≤ 0.001 or +++P ≤ 0.001 versus L-NAME.
3.2. Effects of treatment with ADDP on relaxation responses of calcium ionophore in isolated perfused lungs

Following preconstriction with U46619, responses to the endothelium-dependent vasorelaxant, calcium ionophore A23187, were measured in perfused lungs from pulmonary hypertensive and normotensive rats. Calcium ionophore A23187 completely relaxed the pulmonary circulation of both pulmonary hypertensive and normotensive rats. Chronic treatment of the rats with ADDP potentiated pulmonary relaxation in response to A23187 both in pulmonary hypertensive and in normotensive rats (Fig. 5A, B). Calculation of the EC50 values confirmed the potentiation effect of ADDP treatment in pulmonary arteries pretreated with DAHP and precontracted with phenylephrine. Spermine NONOate or carbachol was added in the presence of ADDP 0.3 μM (■) or HMP 0.3 μM (▲) or vehicle (●). Values are expressed as means ± S.E.M. and n = 4–6.

Fig. 2. Vasorelaxant effects of spermine NONOate (A, B) and carbachol (C, D) in pulmonary arteries pretreated with DAHP and precontracted with phenylephrine. Spermine NONOate or carbachol was added in the presence of ADDP 0.3 μM (■) or HMP 0.3 μM (▲) or vehicle (●). Values are expressed as means ± S.E.M. and n = 4–6.

Fig. 3. Effects of BH4 in DAHP-pretreated (A) and untreated (B) and phenylephrine-pretreated pulmonary arteries (● = BH4 and ○ = time control. Values are expressed as means ± S.E.M. and n = 7–11. **P ≤ 0.01 versus time control.

Fig. 4. (A) Vasorelaxant effects of carbachol in the presence or absence of BH4 in phenylephrine-pretreated pulmonary arteries (○ = carbachol alone, ● = carbachol + BH4). (B) Effects of BH4 on phenylephrine-pretreated pulmonary arteries in the presence of MnTmPyP 30 μM. ● = BH4, x = BH4 + MnTmPyP. Values are expressed as means ± S.E.M. and n = 6. **P ≤ 0.01 carbachol versus carbachol + BH4.
both normoxic as well as hypoxic rat lungs as shown by the significant left-ward shift in the calcium ionophore A23187 dose–response curves generated in the ADDP-treated rat lungs compared to the untreated rat lungs (1.1±0.1×10⁻⁶ M versus 1.5±0.1×10⁻⁶ M in normoxic ADDP-treated and untreated rats respectively, P value ≤0.05, n=8–20; 1.2±0.2×10⁻⁶ M versus 1.7±0.1×10⁻⁶ M in hypoxic ADDP-treated and untreated rats respectively, P value ≤0.05, n=8–20).

3.3. Effects of treatment with ADDP on eNOS expression

Lung samples from untreated and ADDP-treated rats were stained for eNOS immunoreactivity. eNOS immunoreactivity was present throughout the vascular endothelium of small and large pulmonary arteries. Quantitative staining intensity analysis showed that eNOS immunostaining was significantly higher in the pulmonary hypertensive rat lungs when compared to the normotensive controls. Normotensive rats that had been treated with ADDP had significantly higher eNOS expression when compared to the normotensive rats that had received vehicle. In pulmonary hypertensive rats, eNOS expression was already at a high level and was not further increased by treatment with ADDP (Fig. 6).

4. Discussion

In the search for improved molecules that can reverse BH₄ deficiency, sepiapterin has been administered to diabetic rats (Pannirselvam et al., 2003), however it requires conversion by sepiapterin reductase within cells. 5-Methylfolate has been found to improve endothelium function in rats that were depleted of BH₄ (Hyndman et al., 2002), however it is not clear whether this relatively bulky molecule can bind stably to the pterin binding site on eNOS. Numerous analogues of BH₄ have been synthesised, however where these have been tested they inhibit, not stimulate, eNOS (Bömmel et al., 1998; Fitzal et al., 2002; Fröhlich et al., 1999; Gibrael et al., 2000; Gorren et al., 2000).

Our results show that the BH₄ analogues, ADDP and HMP, cause vasorelaxation in pulmonary arteries that have been depleted of endogenous levels of BH₄ by incubation with DAHP. ADDP-induced and HMP-induced relaxation was completely abolished by incubation with L-NAME indicating that relaxation is due to NO formation from

![Graph A](image1.png)
![Graph B](image2.png)

Fig. 5. Vasorelaxant responses of calcium ionophore A23187 in U46619-precontracted (A) chronic hypoxic pulmonary hypertensive and (B) normotensive control rat lungs. (A) Chronic hypoxic rats were ADDP-treated (■) or untreated (●). (B) Matched control normotensive rats were ADDP-treated (▲) or untreated (○). Rats were treated with ADDP 14.1 mg/kg/day s.c. (■, ▲). Values are expressed as means±S.E.M. and n=8–20. **P value ≤0.01 comparing ADDP-treated with respective untreated groups.

Fig. 6. Micrographs of small pulmonary arteries from lungs of rats treated with ADDP with immunohistochemistry for eNOS. (A) Pulmonary hypertensive rat, ×40 objective (B) normotensive rat, ×40 objective. (C) Quantitative measurement of eNOS staining in endothelial cells of small pulmonary arteries in control and ADDP-treated normotensive and chronic hypoxic rats. Values are expressed as means±S.E.M. and n=4–10. **P value ≤0.01 chronic hypoxic versus normoxic.
NOS. This is consistent with the generation of NO by ADDP demonstrated in cultured cells (Suckling et al., 2008). Since ADDP and HMP did not modify vasorelaxation induced by the NO donor spermine NONOate, the analogues are not acting via potentiation of NO already present within the artery environment. Since ADDP and HMP did not cause any vasorelaxation when arteries retained their normal BH4 content, it is likely that ADDP and HMP cannot displace BH4 from NOS but may substitute for BH4 when the pterin site is unoccupied. It is likely that the two analogues of BH4 in higher oxidation states undergo an intracellular reduction reaction to form the active molecule that makes functionally competent NOS (Suckling et al., 2008).

Carbachol was still able to induce a full relaxation of pulmonary artery rings after depletion of BH4 with DAHP, and treatment with ADDP did not significantly change the carbachol concentration–response curve. The explanation is probably that stimulation of muscarinic receptors gives a powerful activation of eNOS that is supramaximal. Certainly NO formation exceeds the amount required for maximal relaxation in rat mesenteric artery (Simonsen et al., 1999). Thus even though eNOS is impaired a significant NO generating capacity remains. This implies that the DAHP treatment has not fully eliminated BH4 from the vascular wall.

BH4 produced no relaxation in pulmonary arteries even when their endogenous BH4 content had been depleted, and in fact produced significant contraction in pulmonary arteries at the higher concentrations studied. The effects of BH4 were demonstrated for the first time in the current work in isolated pulmonary arteries. In addition to the direct contractile effect of BH4, incubation with BH4 resulted in reduction in the potency of endothelium-dependent vasorelaxation with carbachol in pulmonary arteries. The contraction seen with direct administration of BH4 was consistent with what has been observed in the dog basilar artery (Kinoshita and Katucis, 1996) and in aortic rings (Yang et al., 2003). In oxygenated buffer at physiological pH, BH4 undergoes autoxidation, which can generate superoxide (Blair and Pearson 1974; Kirsch et al., 2003; Nishikimi 1975). However, incubation with the cell-permeable SOD mimetic, MnTMPyP, had no effect on the contraction seen with BH4 in pulmonary arteries in our study. This indicates that the BH4-induced contraction is unlikely to involve superoxide formation.

In ADDP-treated rats there was significant potentiation of calcium ionophore A23187-induced relaxation in both normoxic and hypoxic rat lungs when compared to the respective normoxic and hypoxic rat lungs of the untreated group. This indicates that chronic treatment with ADDP resulted in improvement of NO-mediated pulmonary artery dilation. On chronic administration this improvement in pulmonary endothelial function was found not only in the pulmonary hypertensive rats but also in normotensive rats. In normotensive rats, there was enhanced expression of eNOS in the pulmonary vascular endothelium, which may explain the improved response to calcium ionophore A23187 found in vivo despite the carbachol response in vitro being unchanged. Since pulmonary hypertension raised expression of eNOS in the pulmonary vascular endothelium to a high level, it is unsurprising that ADDP treatment was unable to further increase eNOS expression in chronically hypoxic rats. In pulmonary hypertension, eNOS expression is upregulated in pulmonary arteries, although the output of NO is diminished due to uncoupling of NOS (Demiryürek et al., 2000; Weerackody et al., 2009). Thus pulmonary hypertension is able to develop despite the increased eNOS protein present in the pulmonary circulation. Nevertheless in the chronically hypoxic rat ADDP administration did improve calcium ionophore A23187-induced relaxation. This may indicate improved performance of eNOS in the pulmonary vascular endothelium in pulmonary hypertension.

In conclusion, this study identifies two analogues of BH4, which can act as oxidatively stable alternatives to BH4 in causing NO-mediated vasorelaxation. Treatment with ADDP improved endothelium-dependent vasorelaxation in isolated perfused lungs from both normoxic and hypoxic rats and increased eNOS expression in these rats.

Acknowledgements

PHM was supported by the British Heart Foundation (FS2001056). SK was supported by a University of Strathclyde John Anderson Scholarship and by the Overseas Research Student Support Scheme. We thank Dr Allan McPhaden, Department of Pathology, Glasgow Royal Infirmary for validation of the immunohistochemistry scoring.

References

Higashi, Y., Sasaki, S., Nakagawa, K., Kimura, M., Noma, K., Hara, K., Jitsuki, D., Goto, C., Oshima, T., Chayama, K., Yoshizumi, M., 2006. Tetrahydrobiopterin improves aging-
related impairment of endothelium-dependent vasodilation through increase in nitric oxide production. *Atherosclerosis* 186, 390–395.

