Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

The Stokes boundary layer for a power-law fluid

Pritchard, David and McArdle, Catriona R. and Wilson, Stephen K. (2011) The Stokes boundary layer for a power-law fluid. Journal of Non-Newtonian Fluid Mechanics, 166 (12-13). pp. 745-753. ISSN 0377-0257

PDF (Pritchard-etal-JNNFM-2011-The-stokes-boundary-layer-for-a-power-law-fluid)
Pritchard_etal_JNNFM_2011_The_stokes_boundary_layer_for_a_power_law_fluid.pdf - Accepted Author Manuscript

Download (998kB) | Preview


We develop semi-analytical, self-similar solutions for the oscillatory boundary layer (‘Stokes layer’) in a semi-infinite power-law fluid bounded by an oscillating wall (the so-called Stokes problem). These solutions differ significantly from the classical solution for a Newtonian fluid, both in the non-sinusoidal form of the velocity oscillations and in the manner at which their amplitude decays with distance from the wall. In particular, for shear-thickening fluids the velocity reaches zero at a finite distance from the wall, and for shear-thinning fluids it decays algebraically with distance, in contrast to the exponential decay for a Newtonian fluid. We demonstrate numerically that these semi-analytical, self-similar solutions provide a good approximation to the flow driven by a sinusoidally oscillating wall.