Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Advances in time-resolved measurement of magnetic field and electron temperature in low-magnetic-field plasmas

Den Hartog, D. J. and Ambuel, J. R. and Borchardt, M. T. and Caspary, K. J. and Den Hartog, E. A. and Falkowski, A. F. and Harris, W. S. and Ko, J. and Pablant, N. A. and Reusch, J. A. and Robl, P. E. and Stephens, H. D. and Summers, H. P. and Yang, Y. M. (2011) Advances in time-resolved measurement of magnetic field and electron temperature in low-magnetic-field plasmas. Fusion Science and Technology, 59 (11). pp. 124-127. ISSN 1536-1055

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Internal time-resolved measurement of magnetic field and electron temperature in low-field ( 1 T) plasmas is a difficult diagnostic challenge. To meet this diagnostic challenge in the Madison Symmetric Torus reversed-field pinch, two techniques are being developed: 1) spectral motional Stark effect (MSE) and 2) Fast Thomson scattering. For spectral MSE, the entire Stark-split H spectrum emitted by hydrogen neutral beam atoms is recorded and analyzed using a newly refined atomic emission model. A new analysis scheme has been developed to infer both the polarization direction and the magnitude of Stark splitting, from which both the direction and magnitude of the local magnetic field can be derived. For Fast Thomson scattering, two standard commercial flashlamp-pumped Nd:YAG lasers have been upgraded to “pulse-burst” capability. Each laser produces a burst of up to fifteen pulses at repetition rates 1–12.5 kHz, thus enabling recording of the dynamic evolution of the electron temperature profile and electron temperature fluctuations. To further these capabilities, a custom pulse-burst laser system is now being commissioned. This new laser is designed to produce a burst of laser pulses at repetition frequencies 5–250 kHz.