Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Laser accelerated ions in ICF research prospects and experiments

Roth, M. and Brambrink, E. and Audebert, P. and Basko, M. and Blazevic, A. and Clarke, R. and Cobble, J. and Cowan, T.E. and Fernandez, J. and Fuchs, J. and Hegelich, M. and Ledingham, Kenneth and Logan, L.G. and Neely, D. and Ruhl, H. and Schollmeier, M. (2005) Laser accelerated ions in ICF research prospects and experiments. Plasma Physics and Controlled Fusion, 47 (12B). B841-B850. ISSN 0741-3335

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The acceleration of ions by ultra-intense lasers has attracted great attention due to the unique properties and the unmatched intensities of the ion beams. In the early days the prospects for applications were already studied, and first experiments have identified some of the areas where laser accelerated ions can contribute to the ongoing inertial confinement fusion (ICF) research. In addition to the idea of laser driven proton fast ignition (PFI) and its use as a novel diagnostic tool for radiography the strong dependence on the electron transport in the target was found to be helpful in investigating the energy transport by electrons in fast ignitor scenarios. More recently an additional idea has been presented to use laser accelerated ion beams as the next generation ion sources, and taking advantage of the luminosity of the beams, to develop a test bed for heavy ion beam driven inertial confinement fusion physics. We review our recent experiments and simulations relevant to ICF research presenting a possible scenario for PFI as well as the prospects for next generation ion sources.

Item type: Article
ID code: 31223
Notes: 32nd European-Physical-Society Conference on Plasma Physics, Tarragona, SPAIN, JUN 27-JUL 01, 2005
Keywords: accelerated heavy-ion beams , laser-plasma acceleration, plasma production , ultra-intense lasers, Physics, Nuclear Energy and Engineering, Condensed Matter Physics
Subjects: Science > Physics
Department: Faculty of Science > Physics
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 13 Jul 2011 09:55
    Last modified: 05 Sep 2014 09:04
    URI: http://strathprints.strath.ac.uk/id/eprint/31223

    Actions (login required)

    View Item