Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Role of nanoscale strain inhomogeneity on the light emission from InGaN epilayers

de Sousa Pereira, Sergio Manuel and O'Donnell, Kevin Peter and da Costa Alves, Eduardo Jorge (2007) Role of nanoscale strain inhomogeneity on the light emission from InGaN epilayers. Advanced Functional Materials, 17 (1). pp. 37-42. ISSN 1616-301X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

InGaN is the basis of a new generation of light-emitting devices, with enormous technological potential; it is currently one of the most intensively studied semiconductor materials. It is generally accepted that compositional fluctuations resulting from phase segregation are the origin of the high luminescence efficiency of InGaN. Evidence to show that nanoscale strain inhomogeneity plays a fundamental role in determining the spectral properties of InGaN-GaN heterostrucures is reported. For layers above a certain critical thickness, a strong spatially varying strain profile accompanies a nonplanar surface morphology, which is associated with a transition from a planar 2D to a Stranski-Krastanow-like-2D-3D growth mode; the strong dependence of the critical thickness on the local InN content of the growing films drives a non-linear growth instability. Within this framework, apparently disparate experimental observations regarding structural and optical properties,previously reported for InGaN layers, are reconciled by a simple phenomenological description.