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This paper presents some recent results on the deflection of potentially dangerous near
earth objects. A particular deflection technique, employing a swarm of mirrors focusing
the light of the Sun on the surface of the asteroid, is described. The swarm has to fly in for-
mation with the asteroid, or hover in close proximity. The paper describes two different
designs for the mirrors, and different options to place the spacecraft in the vicinity of
the asteroid. In particular the paper shows a number of periodic formation orbits. As an
alternative, results are shown by placing the spacecraft at fixed points in close proximity
to the asteroid, where the solar pressure and the gravity attraction balance each other.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Since the discovery of the asteroid Apophis in December 2004, there has been a revived interest in techniques to deflect
asteroids. From the initial observations, Apophis is expected to have a close encounter with the Earth in 2029. During that
event Apophis could pass through a gravitational keyhole, a precise region in space no more than about 400 m across, which
would set up a future impact on 13 April 2036. Among the approaches proposed to deflect the trajectory of an asteroid, there
are some that consider the generation of a thrust by ablating some surface material. Surface ablation approaches have been
proposed in the past using several techniques such as lasers or nuclear explosives. One method in particular conceptualized
directing solar energy using mirrors onto a small area on the surface of the asteroid. The idea initially appeared on the jour-
nal Space Policy [4] and was later compared to other deflection methods by Melosh et al. [8]. The heat produced by the con-
centrated solar light is used to sublimate the surface matter creating narrow but expanding jets of gas and debris that
produce a low continuous thrust. This low-thrust would eventually alter the orbit of the NEO by producing a change in
velocity.

In a previous studies by the author [10,11], the sublimation technique was compared against other deflection methods
and resulted to be among the most effective methods. However, the use of a single mirror would imply the deployment
and control of a significantly large structure in space and presents a number of difficulties from several points of view, re-
cently pointed out by Kahle et al. [3].
. All rights reserved.
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Fig. 1. Diameter of the mirror versus total duration of the deviation action for a variable number of spacecraft for a fixed deviation of the orbit of Apophis of
384403 km (Earth–Moon distance) at the MOID.
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While some difficulties are related to the control of the mirror in proximity of the asteroid, others are related to the posi-
tioning of the mirrors in order to avoid any impingement with the plume of gas and debris leaving the asteroid, and at the
same time maintain the required power density on its surface. A possible solution would be to use a swarm of mirrors that
would focus the light of the Sun on the same spot on the surface of the asteroid. The launch, deployment and control of each
spacecraft would be more practical than for a single mirror, and the system would be intrinsically redundant and scalable
(for a bigger asteroid, we would need to add more spacecraft but the design of each spacecraft would not require any mod-
ification or further development).

In a recent study [5], it was demonstrated how a significant deviation of the asteroid Apophis could be achieved with a
relatively small number of satellites (20–40) each carrying a relatively small primary mirror (between 10 and 40 m in diam-
eter). Fig. 1 shows a comparison of the required minimum diameter of the aperture of the primary parabolic mirror versus
the duration of the thrust. The comparisons were done for different swarm sizes ranging from a single spacecraft (for a base-
line comparison) up to 5000. For each swarm size, the diameter of the illuminated spot size on the surface of the asteroid was
set to 0.5 m or 1.5 m. The difference can be seen as the duration of the thrust increases; the lower branch corresponds to the
0.5 m spot size, and the upper branch, the 1.5 m. This is expected as the higher the power density, the smaller the spot size
(or a higher concentration ratio for the same incoming solar power). The deviation distance was nominally fixed equal to the
earth–moon distance at the minimum orbital interception distance (MOID) from the Earth.

However, placing the mirrors in proximity of the asteroid was still an open issue. In particular the analysis of the orbital
maintenance of the mirrors was still missing. In this paper, the multi-mirror option is presented together with an analysis of
the positioning of the mirrors in the vicinity of the asteroid. A model for two different configurations – a novel single and
dual-mirror configuration – will be presented. Apophis is used as case study because of the relatively high threat posed
by this particular asteroid.

The first section of the paper will describe the two mirror configurations and the derivation of the force due to the solar
pressure acting on the spacecraft. The second section will present a family of formation orbits that can be used to place and
control the mirrors. The third section will present an alternative method to place and control the mirrors at artificial equi-
librium points (AEPs) in proximity of the asteroid.
2. Mirror design

The design of the device that is focusing the light of the Sun on the surface of the asteroid is a critical aspect of this deflec-
tion method. The device has to be able to concentrate a minimum power density at all times (see Sanchez et al. [11] for fur-
ther details). Therefore, it is required to have the capability to steer the beam of light to hit any part of the asteroid and to
control the concentration factor (or amount of light that is focused on a particular spot).

Here we propose two different configurations for the focusing device: a parabolic symmetric primary mirror with colli-
mating lens and secondary directional mirror (Fig. 2a), and an asymmetric focusing mirror with collimating lens and no
directional mirror (Fig. 2b). In the former case the primary mirror always points toward the Sun. The lens(es) produces a
collimated beam of light that reflects on the secondary mirror and is projected onto the surface of the asteroid. In the latter
case the primary mirror should be properly oriented based on the Sun vector. The configuration in Fig. 2b can be easily mod-
ified by removing the lens and focusing the light directly on the surface of the asteroid. If the light is focused directly on the
surface of the asteroid, the focal point has to be moved away from the mirror and the mirror will result in being almost flat.



Fig. 2. Dual-mirror (left) and single mirror (right) configurations.

Fig. 3. Hill’s rotating reference frame in the radial x, transversal y- and normal z-directions.
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Since the mirrors are moving with respect to the asteroid, we introduce a local rotating reference frame centered in the
barycenter of the asteroid (Hill’s reference frame in Fig. 3). In this reference frame, the x-axis is aligned with the Sun-asteroid
vector, the y-axis is the direction of motion and the z-axis is perpendicular to the asteroid orbital plane in the direction of the
orbital angular momentum.

2.1. Single mirror configuration

The single mirror configuration is composed of an asymmetric adaptive primary mirror and of a collimating lens (or set of
lenses). The shape of the primary mirror is assumed to be adaptable such that the focal point can be moved in order to steer
the beam in the desired direction.

In order to define the shape of the mirror and its attitude with respect to the Sun we introduce the mirror reference frame
in Fig. 4, with coordinated axes xM ; yM ; zM . The mirror reference frame is tilted by an angle b with respect to the Hill’s refer-
ence frame and is centered in the center of mass of the mirror assembly. Note that in the following analysis we assume that
the spacecraft is a point mass and therefore the position of its barycenter does not change for any variation of the shape of
the mirror.

Now, given the position of the focal point Pf in the mirror reference frame and the position of a mirror element with infin-
itesimal area dA, the law of reflection (assuming a perfect reflection) gives us (see Fig. 5):
dxM

dyM
¼ tan½b� p=2� aðxM ; yM; xf ; yf ;bÞ� ð1Þ
where ½xf ; yf � is the position of the focal point Pf , b is the Sun aspect angle with respect to the reference frame of the mirror
assembly and a is the reflection angle. Note that the angle b also represents the attitude angle of the mirror reference frame
with respect to the Hill’s reference frame and therefore will be referred to as the attitude angle of the mirror in the following.
By integrating Eq. (1) with initial conditions yM0

and xM0 , we can get the shape of each section of the mirror in the xM–yM

plane given the position of Pf and the direction of the incoming Sun rays. In the following, we will define the focal distance
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Fig. 4. Definition of the mirror reference frame with respect to the Hill’s rotating reference frame.
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Fig. 5. Geometry for mirror design.
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as fp ¼ xf � xM0 . The mirror is then considered to be symmetric with respect to the xM–yM plane such that each section of the
mirror parallel to the xM–zM plane is a parabola with focus Pf .

Once the shape and orientation of the mirror are defined, the total force acting on the mirror assembly can be computed
by integrating the following expression over the surface of the mirror A:
dF ¼ 2gMP cos2 an dA ð2Þ

FSM ¼ 2gMP
Z

A
cos2 an dA ð3Þ
where the solar pressure at 1AU is P0 ¼ 4:563 � 10�6 N=m2, P is the solar pressure at a distance rd from the Sun
P ¼ P0ðr1AU=rdÞ2, r1AU is one astronomical unit and gM is the efficiency of the mirror (assumed to be 1.0).

2.2. Dual-mirror configuration

For the dual-mirror configuration, three forces have to be taken into account: F1 ¼ gpriApriPðrd=rdÞ is the force due to the
solar pressure acting onto the primary mirror, F2 is the force due to the solar pressure acting onto the secondary mirror and
F3 is the force due to the reflected light from the primary mirror onto the secondary mirror.

The primary mirror in this configuration is assumed to be parabolic and always pointing toward the Sun, while the sec-
ondary mirror is flat. Due to the concentration factor, the power density of the reflected light is higher than the one of the
direct light, therefore, though the surface of the secondary mirror is smaller than the one of the primary, the reflected solar
light exerts a force on the secondary mirror which is
F3 ¼ �ð2gsec cos2 a2ÞgpriApriP n2 ð4Þ
while F2 is simply:
F2 ¼ ð2gsec cos2 a2ÞAsecP n2 ð5Þ
Both forces are acting in the direction normal to the secondary mirror surface n2.
The total force acting on the mirror assembly (i.e. primary, secondary mirror and lenses) is given by:
FDM ¼ F1 þ F2 þ F3 ð6Þ
expressed as a vector in the local Hill’s reference frame.
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3. Funnel formation orbits

One option is to consider the asteroid as a point mass and the spacecraft flying in formation with it, the asteroid being the
chief or target and the spacecraft the chasers. As a first approximation, the gravity field of the asteroid is considered to have
negligible influence on the motion of the spacecraft. This situation corresponds to the spacecraft flying outside the sphere of
influence of the asteroid or compensating for its gravity attraction with an active control. Furthermore, it is assumed that no
other forces are acting on the spacecraft apart from the gravity attraction of the Sun. The position vector of the spacecraft is
therefore given by [12]:
xðhÞ ¼ rc

a
da� a cos hdeþ ae sin h

g
dM

yðhÞ ¼ rc sin h
g3 ð2þ e cos hÞdeþ rc cos i

rc

g3 ð1þ e cos hÞ2dXþ rcdxþ
rc

g3 ð1þ e cos hÞ2dM

zðhÞ ¼ rc sin h�di� rc cos h� sin idX

ð7Þ
where p ¼ ½a; e; i;x;X;M�T are the orbital parameters of the asteroid, dp ¼ ½da; de; di; dx; dX; dM�T their variation, g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

,
rc is the modulus of the inertial orbital radius of the asteroid, h is the true anomaly, h� ¼ hþx is the true latitude, h ¼ g ffiffiffiffiffiffiffiffi

alS
p

is the orbital momentum, lS is the gravity constant of the Sun and x, y and z are the local cartesian Hill’s frame coordinates.
The motion described by Eq. (7) is governed by the dynamic equations [12]:
€x ¼ 2 _h _y� y
_rc

rc

� �
þ x _h2 þ lS

r2
c
� lS

r3
d

ðrc þ xÞ

€y ¼ �2 _h _x� x
_rc

rc

� �
þ y _h2 � lS

r3
d

y

€z ¼ �lS

r3
d

z

ð8Þ
We want to maintain a periodic motion of the mirrors in the proximity of the asteroid therefore we impose the condition for
periodicity da ¼ 0 which guarantees that dM is constant.

Given that all the mirrors will have to focus the light onto the same spot, the pointing requirements should be minimized,
which implies a close proximity to the asteroid. On the other hand, it is desirable to limit the gravitational perturbations
from the asteroid and therefore the satellites should fly outside a limit sphere. In addition, the satellites should avoid
impingement with the exhaust gases caused by the sublimation of the asteroid material.

If we assume that the optimal thrust direction that maximizes the deviation is along the unperturbed velocity vector of
the asteroid [14,1] then the exhaust gasses will flow along the y-axis of the local Hill’s reference frame. The problem can be
formulated in mathematical terms as follows (see Fig. 6):
min
dp2D

min
h

f1 ¼ r ð9Þ

min
dp2D

min
h

f2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
ð10Þ
subject to the constraint:
C ¼ min
h
ðrðhÞ � rsphÞ > 0 ð11Þ
where and rsph is a limit sphere and D is the search space for the solution vector dp and r ¼ krk is the modulus of the position
vector of the mirror with respect to the asteroid r ¼ ½x; y; z�T. The problem in Eqs. (9)–(11) was solved with a hybrid stochas-
tic-deterministic approach based on a multiagent search technique combined with a decomposition of the search space
[6,13]. Fig. 7 shows the resulting Pareto optimal solutions to Eqs. (9)–(11) for rsph ¼ 2:3 km, which is a limit imposed to avoid
the effects of the inhomogeneous gravity field of the asteroid.
+

Fig. 6. Geometry for the design of funnel orbits.



Fig. 7. Pareto front for the funnel orbits problem.
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Fig. 8. d parameter for Pareto optimal solutions, all values are scaled by 1e�7.
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Fig. 8 is showing the set of Pareto optimal solutions in the parameter space. As can be seen, the solutions are sym-
metrically distributed about the value 0 of the d parameters. It is interesting to note that for the same value of dx or dX,
there are multiple values for f1 and f2. This suggests the existence of multiple families of formation orbits with different
characteristics with respect to the criteria f1 and f2. The whole set of Pareto optimal orbits are represented in Fig. 9. They
form two funnels growing in diameter as the orbits move away from the asteroid. The Pareto front in Fig. 7 presents an
almost vertical set of points and a ‘knee’ where the front changes slope. The orbits belonging to the vertical set are rep-
resented in Fig. 10 (left graph). In the same figure (right graph), we also plotted some particular solutions with a higher
value of f1 and f2. These solutions form four families of symmetric orbits. The existence of these solutions suggests that
the problem may present four complete funnels, and not just two as in Fig. 9, where for the other two funnels only few
orbits are represented.

A similar configuration can be also obtained for a limit sphere of 45 km which corresponds to the distance at which the
gravity of the asteroid becomes irrelevant. In this case, though, the pointing accuracy would be one order of magnitude
higher.



Fig. 10. Funnel configuration for the solutions of Eq. (9) with rsph ¼ 2300 m: left figure represents the solutions in the vertical part of the Pareto set before
the knee, right figure represents two families of symmetric orbits for each funnel.

Fig. 9. Funnel configuration for the solutions of Eq. (9) with rsph ¼ 2300 m.
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3.1. Orbit maintenance

Funnel formation orbits were designed assuming no solar pressure and no gravity attraction from the asteroid. In order to
consider the gravity attraction from the asteroid negligible, as mentioned before, the mirror should be placed outside the
sphere of influence of the NEO, with a consequent stringent requirement on the pointing capabilities of the mirror. Further-
more, although at that distance the gravity of the asteroid becomes negligible, the solar pressure still plays an important role
in the dynamics of the spacecraft. Another option is to compensate for the gravity attraction and for the solar pressure. If this
strategy is adopted a thrust has to be generated in the opposite direction of the resultant of the two forces.

Eq. (8) assume that the asteroid is not a gravitational body and that there is no other force than the gravity attraction of
the Sun. If the contribution of the gravity field of the asteroid and of the solar pressure are taken into account, Eq. (8) have to
be rewritten in the following form:



θ θ

Fig. 11. Funnel orbits: (left) the controls for a Pareto solution at the knee of the Pareto front; (right) the controls for the solution farthest away from the
asteroid.
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€x ¼ 2 _h _y� y
_rc

rc

� �
þ x _h2 þ lS

r2
c
� lS

r3
d

ðrc þ xÞ � lA

r3 xþ ŝxðx; y; zÞ
m

þ ux

m

€y ¼ �2 _h _x� x
_rc

rc

� �
þ y _h2 � lS

r3
d

y� lA

r3 yþ ŝyðx; y; zÞ
m

þ uy

m

€z ¼ �lS

r3
d

z� lA

r3 zþ ŝzðx; y; zÞ
m

þ uz

m

ð12Þ
where lA is the gravity constant of the asteroid, u ¼ ½ux;uy;uz�T is the control force, m is the mass of the spacecraft, and the
contribution of the solar pressure FSM ¼ ½̂sx; ŝy; ŝz�T is derived from Eq. (6).

We can now estimate the required control capabilities by plugging the position and velocity time history for the funnel
orbits into the equations of motion and solving for the control required to compensate for solar pressure and gravity attrac-
tion of the asteroid. We assume here an initial mass of the spacecraft m ¼ 2000 kg and a surface area of the primary mirror
Apri ¼ 196 m2 with a secondary mirror of 0.5 m in diameter.

Fig. 11 represents the three components of the control thrust for the formation orbit at the knee of the Pareto front (left
graph) together with the control thrust for the formation orbit furthest away from the asteroid (right graph). It is interesting
to note that the magnitude of the control for the two orbits is quite similar. This suggests, as expected, that the controls are
mainly compensating for the solar pressure, with the gravity attraction of the asteroid being less significant.

4. Artificial equilibrium points for a solar concentrator

If solar pressure and the gravity field of the asteroid are taken into account then the mirrors can be designed so that the
two forces are in equilibrium, with the spacecraft hovering at a fixed location (and distance) from the asteroid. Note that
unlike the problem of finding AEPs for a flat reflector [7], here we analyze the case of a curved reflector with pointing
constraints.

Considering that the mirror has to constantly reflect the light onto the surface of the asteroid (pointing constraint), if the
mirror was flat the only possible equilibrium configuration would be with the asteroid-mirror direction aligned with the
spacecraft-Sun direction. If the mirror is not flat, instead, then we can look for possible position vectors r, solar aspect angles
b and focal distances fp such that the vector FSM ¼ ½sx; sy; sz�T is aligned with the asteroid-mirror direction and:
� 2 _hy
_rc

rc
þ x _h2 þ lS

r2
c
� lS

r3
d

ðrc þ xÞ � lA

r3 xþ sxðx; y; z; b; fpÞ
m

¼ 0

2 _hx
_rc

rc
þ y _h2 � lS

r3
d

y� lA

r3 yþ syðx; y; z;b; fpÞ
m

¼ 0

� lS

r3
d

z� lA

r3 zþ szðx; y; z;b; fpÞ
m

¼ 0

ð13Þ
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Note that, the force due to solar pressure is obtained from Eq. (2). In the following, we will consider only the planar case with
z ¼ 0, since in this case the third equation in Eq. (13) is satisfied.

Fig. 13 represent the misalignment of the force vector due to the solar pressure with respect to the spacecraft-asteroid
direction for two different focal lengths. In the figures L is the length of the projection of the mirror onto the yM axis of
the mirror reference frame. The angle b, as before, is the direction of the light impacting on the mirror while Db is the angle
between the incoming sunlight and the direction of the focal point of the mirror (see Fig. 4). The direction of the focal point
identifies the pointing direction. We consider only one quadrant of the Hill’s frame with positive x and negative y. For po-
sitive x and positive y the solutions are symmetric; there are no solutions in the other two quadrants.

As it can be seen for b ¼ p=2, the only equilibrium solutions are along the Sun-asteroid direction. However, in this case
the mirror would be in shadow and therefore no equilibrium points can exist along that direction. For higher values of b,
equilibrium points can exist at higher angular distances from the radial direction. For example, for b ¼ 139 deg the mirror
can be placed at r ¼ ½1:3699;0:48225;0�Tkm, which is about 20 deg from the radial direction (Fig. 12 shows the level of accel-
eration acting on the spacecraft).
Fig. 12. Example of AEP at 20 deg from the radial direction.
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Fig. 13. Misalignment between the position vector r and the direction of resultant force due to solar pressure: (left) the misalignment for a focal distance
equal to 2 L; (right) the misalignment for a focal distance equal to 2:5 L.
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This artificial equilibrium point offers a good location for projecting the light of the Sun on the side of the asteroid along
the y-direction, and away from the plume of gases. If we assume that the lens produces a collimated light beam with neg-
ligible divergence, and that the beam is projected at the intersection of the surface of the asteroid with the y-axis, then we
can compute where the two extreme points of the beam intersect the surface of the asteroid. From this intersection, we can
compute the spot size given the beam size and the elevation over the y-axis. As can be seen in Fig. 15, for a beam size be-
tween 0.5 and 1 m in diameter, the increase in spot size due to an elevation of 70� along the y-axis and 20� from the radial x-
axis, is still limited. Fig. 14 shows a set of artificial equilibrium points for different surface areas of the mirror and for ele-
vation angles from 60 to 90 degrees.

4.1. Orbit maintenance

Solar pressure depends on the distance from the Sun, therefore, if the size of the mirror is constant, as the asteroid moves
around the Sun the force acting to the spacecraft changes with the true anomaly h. As a consequence, the position of the
equilibrium points changes with time unless the orbit of the asteroid is circular.
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Fig. 16 shows, for different attitudes of the mirror (left plot), the position of the equilibrium points over a full orbit of the
asteroid Apophis. Fig. 16 also shows (right plot) the variation of the position of the AEP for a particular attitude of the mirror,
over half an orbit. The black dots represent the computed position of the equilibrium points for an angle b ¼ 129 deg while
the continuous line is given by the following equations,
xAEP ¼ rAEPðh0Þ cosð�Þð1þ e cosðh0ÞÞ=ð1þ e cosðhÞÞ
yAEP ¼ rAEPðh0Þ sinð�Þð1þ e cosðh0ÞÞ=ð1þ e cosðhÞÞ

ð14Þ
where � ¼ arctan yAEPðh0Þ
xAEPðh0Þ

h i
is the angular position of the AEP for h ¼ h0. Then, the distance of the AEP from the asteroid varies

with the following law:
rAEP ¼ rAEPðh0Þð1þ e cosðh0ÞÞ=ð1þ e cosðhÞÞ ð15Þ
Since the AEPs are moving, a spacecraft placed at an AEP would move toward the asteroid or away from the asteroid depend-
ing on the initial h. Specifically, for h 2 ½0;p� the spacecraft would fall toward the asteroid, while for h 2 ½p;2p� the spacecraft
would escape along the radial direction.

We can envisage two strategies to maintain the orbital position of the mirror: compensating for solar pressure and gravity
attraction with an active control (low-thrust)or letting the spacecraft drift along the radial direction chasing the position of
the equilibrium points.

In order to chase the AEP the spacecraft has to move with the same kinematics, therefore we can impose the following
velocity and acceleration:
dx
dt
¼ drAEP

dt
cosð�Þ dy

dt
¼ drAEP

dt
sinð�Þ ð16Þ

d2x
dt2 ¼

d2rAEP

dt2 cosð�Þ d2y
dt2 ¼

d2rAEP

dt2 sinð�Þ ð17Þ
with
drAEP

dt
¼ r2

AEPe sinðhÞ _h
rAEP0

ð18Þ

d2rAEP

dt2 ¼ erAEP

rAEP0

2 _rAEP sinðhÞ _hþ rAEP cosðhÞ _h2 þ rAEP sinðhÞ€h
h i

ð19Þ
Eqs. (16) and (17) represent an imposed shape to the motion of the spacecraft. If we then substitute Eqs. (14), (16) and (17)
into the dynamic equations and solve for the controls we can get the required thrust components to follow the prescribed
kinematics.
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In Fig. 17 we present an example of thrust profile for the former strategy (left image) and for the latter strategy (right
image).

As it can be seen, the control capability required to maintain a fixed position is greater than the one required to chase the
AEP. A possible scenario, therefore, is that the swarm can be distributed around the asteroid at different angles � and the
mirrors would move back and forth along the radial directions.

4.2. AEPs for a non-spherical asteroid

The analysis presented in the previous section is valid for a spherical asteroid with a homogenous gravity field. However
asteroids have an irregular shape with a very inhomogeneous gravity field. As done previously by other authors, we can as-
sume that the asteroid is an ellipsoid with semi-axes aI , bI and cI (see Fig. 18). In particular we assume that the semi-axis cI is
aligned with the z-axis of the Hill’s frame and that the asteroid is rotating around the z-axis with angular velocity xR. Note
that the rotation around z is most likely not the only motion associated to an irregular asteroid. For example, it can be ex-
pected that an irregular body is also wobbling but these additional motion components are not considered in the present
analysis. Furthermore, during the ablation process the mass of the asteroid changes (see Ref. [11]) as well as its shape. In
fact, the strategy considered here and in Sanchez et al. [11] is not to track a fixed spot on the surface of the asteroid but
to keep the direction of the beam substantivally fixed, as the surface of the asteroid moves under the spotlight. The result
is to plough the asteroid as the sub-satellite point is moving along its surface. Moreover, in the ideal case, the lenses should
generate a perfectly collimated beam, thus no adaptive focusing would be needed when the surface of the asteroid moves
away or closer to the mirror. In the real case, instead, it is expected that the position of the lenses can be controlled to im-
prove the focusing of the beam. However, even the change in mass and shape of the asteroid is not considered in the present
analysis, as it is minimal over short periods of time, and will be addressed in a future study.
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Fig. 17. Control profiles for orbit maintenance for A ¼ 196 m2.

Fig. 18. Geometry of an ellipsoidal asteroid.
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Fig. 20. AEPs station keeping control for a nonspherical asteroid.
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With this assumptions we can express the gravity field of the asteroid as the sum of a spherical field plus a second-degree
and second-order field [2,9]:
U20þ22 ¼
lA

r3 C20 1� 3
2

cos2 d

� �
þ 3C22 cos2 d cos 2k

� �
ð20Þ
where the harmonic coefficients C20 and C22 can be expressed as a function of the semi-axes:
C20 ¼ �
1

10
2c2

I � a2
I � b2

I

� �

C20 ¼
1

20
a2

I � b2
I

� � ð21Þ
and the angles d and k are defined as
d ¼ 0

k ¼ arctan
y
x

� �
þxRt

ð22Þ
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Note that as before we are only interested in the in-plane motion and therefore d is taken equal to 0. The equations for the
equilibrium points then become
� 2 _hy
_rc

rc
þ x _h2 þ lS

r2
c
� lS

r3
d

ðrc þ xÞ � lA

r3 xþ sx

m
þ oU20þ22

ox
¼ 0

2 _hx
_rc

rc
þ y _h2 � lS

r3
d

y� lA

r3 yþ sy

m
þ oU20þ22

oy
¼ 0

� lS

r3
d

z� lA

r3 zþ sz

m
þ oU20þ22

oz
¼ 0

ð23Þ
We assume an angular speed of one revolution every 30 hours as for the astroid Apophis and three different elongations:
bI=aI ¼ 0:73, bI=aI ¼ 0:51 and bI=aI ¼ 0:34. Since we are interested only in the in-plane motion, we can set cI ¼ bI . Fig. 19
shows the position of the AEPs for the three different elongations over one full orbit of the asteroid around the Sun.

If now we apply the same control strategy as proposed in the previous section and we force the spacecraft to follow the
position of the AEP for a spherical asteroid we get the control profiles represented in Fig. 20.

5. Final remarks

In this paper we presented an analysis of the proximal motion of a set of mirrors with respect to an asteroid. Two con-
figurations for the mirrors were analyzed and for each one a different strategy for orbit maintenance was considered. In par-
ticular, the dual-mirror configuration led to the definition of a particular set of formation orbits composing two symmetric
funnels with the principal axis aligned with the y-axis of the Hill’s reference frame. These funnel orbits allow the spacecraft
to have a very good visibility of the target spot on the surface of the asteroid and at the same time give some room for the
plume of gas to flow with minimal impingement. The funnel orbits are located outside a limit sphere, where the gravity field
of the asteroid can be considered homogenous. This limit sphere imposes a requirement on the pointing accuracy and on the
focusing capabilities of the mirror assembling. A second option considered a single mirror configuration. For this second op-
tion the mirror can be placed at artificial equilibrium points quite inclined over the y-axis of the Hill frame. From this posi-
tion, the spacecraft sees the target point on the surface of the asteroid from a high elevation angle. However, AEPs can be
found such that the distortion of the spot area due to the elevation angle is limited. For this second option a control strategy
was proposed that allows the spacecraft to oscillate in a confined region in the proximity of the asteroid with very low con-
trol thrust. Even adding the effect of the gravity field of an elongated body the magnitude of the required control thrust re-
mains limited. The low level of thrust would suggest the use of FEEP engines, which would lead to a minimal propellant
consumption even over long operation times.
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