Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

A quantum model for collective recoil lasing

Bonifacio, R. and Cola, M.M. and Piovella, N. and Robb, G.R.M. (2005) A quantum model for collective recoil lasing. EPL: A Letters Journal Exploring the Frontiers of Physics, 69 (1). pp. 55-60. ISSN 0295-5075

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Free Electron Laser (FEL) and Collective Atomic Recoil Laser (CARL) are described by the same model of classical equations for properly defined scaled variables. These equations are extended to the quantum domain describing the particle's motion by a Schrodinger equation coupled to a self-consistent radiation field. The model depends on a single collective parameter (rho;) over bar. which represents the maximum number of photons emitted per particle. We demonstrate that the classical model is recovered in the limit (rho;) over bar much greater than 1, in which the Wigner function associated to the Schrodinger equation obeys to the classical Vlasov equation. On the contrary, for (rho;) over bar less than or equal to 1, a new quantum regime is obtained in which both FELs and CARLs behave as a two-state system coupled to the self-consistent radiation field and described by Maxwell-Bloch equations.

Item type: Article
ID code: 31115
Keywords: accelerators, electromagnetism, beams, optics, free-electron lasers, Physics, Physics and Astronomy(all)
Subjects: Science > Physics
Department: Faculty of Science > Physics
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 01 Jul 2011 10:10
    Last modified: 05 Sep 2014 08:56
    URI: http://strathprints.strath.ac.uk/id/eprint/31115

    Actions (login required)

    View Item