Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Quantum regime of free electron lasers starting from noise

Bonifacio, R. and Piovella, N. and Robb, G.R.M. and Schiavi, A. (2006) Quantum regime of free electron lasers starting from noise. Physical Review Special Topics: Accelerators and Beams, 9 (9). ISSN 1098-4402

Full text not available in this repository. (Request a copy from the Strathclyde author)


We investigate the quantum regime of a high-gain free-electron laser starting from noise. In the first part, we neglect the radiation propagation and we formulate a quantum linear theory of the N-particle free-electron laser Hamiltonian model, quantizing both the radiation field and the electron motion. Quantum effects such as frequency shift, line narrowing, quantum limitation for bunching and energy spread, and minimum uncertainty states are described. Using a second-quantization formalism, we demonstrate quantum entanglement between the recoiling electrons and the radiation field. In the second part, we describe the field classically but we include propagation effects (i.e. slippage) and we demonstrate the novel regime of quantum SASE with high temporal coherence and discrete spectrum. Furthermore, we describe "quantum purification'' of SASE: the classical chaotic spiking behavior disappears and the spectrum becomes a series of discrete very narrow lines which correspond to transitions between discrete momentum eigenstates ( which originate high temporal coherence).