Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Sum-frequency generation in an ultracold atomic gas due to collective atomic recoil

Robb, G.R.M. and McNeil, B.W.J. (2006) Sum-frequency generation in an ultracold atomic gas due to collective atomic recoil. Journal of Physics B: Atomic, Molecular and Optical Physics, 39 (22). ISSN 0953-4075

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We describe a method for sum-frequency generation via non-degenerate four-wave mixing in classical (thermal) and quantum ultracold atomic gases (BEC). An integral part of the sum-frequency generation process is a collective instability which spontaneously generates a periodic density modulation in the atomic gas with a period comparable to the wavelength of the generated high-frequency optical field. Due to the generation of this density modulation, phase matching between the pump and generated fields is not a necessary initial condition for this sum-frequency generation process to occur: rather the density modulation acts to `self-phase-match' the fields during the course of the sum-frequency generation process. We describe a one-dimensional model of this process, and suggest a proof-of-principle experiment to demonstrate a regime where the sum-frequency generation process evolves quantum mechanically, with discrete emission of sum-frequency photons. This experiment would involve pumping ultracold Cs atoms in a high-finesse unidirectional cavity with three infrared pump fields to produce blue light as a series of hyperbolic secant pulses.